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Motivation
Realtime, unconstrained motion capture
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• Numerous applications in entertainment (film, TV, games, VR, AR) and life sciences
• Existing approaches typically place many restrictions on the capture setting or offer

limited accuracy
• Goal: real-time, full-3D kinematic motion capture with low encumbrance, flexible

capture configurations

Traditional IR marker-based approach Our approach

Image: kinectic.net



Motivation
Overcoming limitations of previous methods
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Features / Approach
Optical 
[4] IMU [13] Kinect

Andrews
2016 [6] SIP [18] CPM [19] Vnect [12]

Trumble
2017[16] Ours

Realtime, online (video rates) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Outputs full 6DOF motion (incl. axial rotation) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Outputs unambiguous 3D global position ✓ ✓ ✓ ✓
Kinematic skeleton for animation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dynamic lighting and background ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Outdoor ✓ ✓ ✓ ✓ ✓ ✓
Robust to heavy occlusion ✓ ✓ ✓ ✓
Long range ( > 5m ) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Marker-less ✓ ✓ ✓ ✓ ✓ ✓ ✓
Subject fully unencumbered ✓ ✓ ✓

• Our method: high fidelity, full skeletal solve in realtime, with modest
hardware requirements, low encumbrance and flexible capture
environments



Hybrid video and IMU solution

• Combining complementary input modalities, multiple-view video and IMUs
• Full 6DOF kinematic skeleton solve suitable for character animation

(axial rotation recovered from IMU input)
• Drift-free global 3D position without depth ambiguity (multiple-view 

video)
• Indoor or outdoor, uncontrolled conditions, e.g. moving background, 

changing illumination, heavy occlusion (no silhouettes, visual hulls or 
appearance consistency)

• Minimal incumbrance (no markers, only a few IMUs)
• Flexible hardware configuration (number of cameras and IMUs)
• Realtime, online operation at video rates (efficient per-frame pose 

optimization rather than batch processing)

Realtime, unconstrained motion capture
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Approach
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Approach

• Inertial measurements
• Xsens MTw IMUs, worn on body

• Orientation
• Acceleration

• 2D keypoint detections 
• Standard video input (no optical 

markers or IR cameras)
• State-of-the art convolutional pose 

machine (CPM) detector [19]
• Labelled keypoint (joint) 

position estimates
• Detection confidences

Data sources
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Image: [19]

Image: www.xsens.com



Overview

• Kinematic skeleton, parameterised by a 66D pose 
vector θ containing:

• Root translation (3D)
• Root orientation (3D)
• Joint rotations (3 x 20 non-root bones)

• Bone positions and orientations determined from 
parameter vector by forward kinematics:

• Minimization of a cost function yields the optimal 
parameter vector for each frame

Hybrid kinematic solver using video and IMU input
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Bone offsetJoint rotation



Cost function
Overview
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• Cost function to optimize pose parameter vector θ based on sum of terms
• Optimized using non-linear least squares [5], initializing each frame with the previous 

frame

Orientation (IMUs)

Position (images)

Acceleration (IMUs)

PCA projection

PCA deviation



Cost function

• Minimize relative orientation between body 
segment and measured IMU orientation

Orientation terms
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Cost function

• Minimize the distance between the projected
solved keypoint locations and the 2D keypoint
detections

Position terms

11

 

 

 
 

 
   

   

 

 

  

 

EP(θ)

Proj. pos. target

2D pos. meas.

Term weighting

Robust Cauchy loss function

Detection confidence

For all cameras For all keypoints



Cost function

• Minimize the difference between the solved
and measured acceleration at each IMU site

Acceleration terms
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Cost function

• The skeletal pose is not fully constrained 
by position and orientation data alone

• Prior terms are needed to encourage 
plausible poses (e.g. of the spine)

• PCA model from prior pose database
• DOF excluding root joint –

invariance to position and 
heading

• k-means clustering to avoid over-
representation of common poses

• 95% of the variance, 
dimensionality from 60 to 23

Pose prior terms
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Visualization of pose principal components

[Video – visualization of PCA 
components]






Cost function
Pose prior terms
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• PCA projection prior  - encourages the pose 
to lie close to a subspace of prior observed 
poses (soft dimensionality reduction)

• PCA deviation prior - discourages deviation 
beyond the prior observed range of motion 
(soft joint limit)

EPP(θ)

EPD(θ)

PCA subspace

Solved pose

Projected pose
 

 
   

   

 

 

  

 

  

  



Increasing 2D detection throughput

• The CPM keypoint detection [19] is a bottleneck (requiring > 150 ms per image)
• Aim to achieve video rate operation while detecting on multiple camera views
• CPM detector – detect multiple people in a single image
• Solution: pack regions of interest from several input images into a single image for 

detection, then resolve to originating frame and camera
• 8x increase in throughput
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Results
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Results

• Quantitative evaluation on indoor data 
(Total Capture dataset [16])

• Number of cameras
• Subsampling of 2D detections
• Number of IMUs

• 13 IMUs – head, upper/lower 
back, upper/lower limbs and 
feet

• 6 IMUs – head, lower back, 
lower limbs (sparse)

• Ablation study
• Qualitative evaluation on outdoor data, 

captured in uncontrolled conditions

Overview
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Input configuration

• Can use as few as 2 cameras
• Limited benefit in using more than 3-4 

cameras
• In principle, a single camera could be 

used, but having multiple views avoids 
depth ambiguity

• No requirement for foreground 
segmentation or visual hulls, thus more 
freedom in capture environment and 
camera layout

Number of cameras
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Input configuration

• Increase output frame-rate by 
performing expensive CPM detection
on a subset of input frames

• High quality (HQ) setting detect on all 
frames (1/1), 8 cameras

• Hight speed (HS) – detect on 2/8 frames, 
4 cameras

• Best to detect 2 consecutive frames
rather than 1 frame and shorter interval 
(bottom right-hand figure)

2D detection subsampling
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(No is number of consecutive frames detected)



Results
Video – indoor capture
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[Full-screen video – indoor capture results]






Input configuration
Number of IMUs and quality/speed trade-off
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Input configuration

• Orientation term important for 
removing jitter in position as well as 
disambiguating axial orientation

• Acceleration term has relatively small 
impact

• Position term important to lock down 
global 3D position (avoids run-away 
drift from double integration of noisy 
acceleration)

• PCA projection and deviation prior 
terms important for constraining 
pose

Omitting terms from the cost function

22

Position and angle error with terms omitted 
(relative to full cost function below)



Results

[Full-screen video – outdoor capture results]

Video – outdoor capture
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Conclusion
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Conclusions and future work

• Hybrid motion capture approach
• Full 6DOF kinematic solve
• Drift-free 3D global translation
• Unconstrained capture environment
• Flexible, sparse input configurations
• Real-time, online (suitable for on-set pre-vis, interactive applications)

• Future work
• Improve real-time performance by using multiple GPUs for CPM 

detection
• Extending to work with multiple people
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Questions?
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