

Real-time Full-Body Motion Capture from Video and IMUs

<u>Charles Malleson</u>, Marco Volino, Andrew Gilbert, Matthew Trumble, John Collomosse and Adrian Hilton

> **CVSSP University of Surrey**

30V 2017

Motivation

Motivation

Realtime, unconstrained motion capture

- Numerous **applications** in entertainment (film, TV, games, VR, AR) and life sciences
- Existing approaches typically place many **restrictions** on the capture setting or offer limited accuracy
- Goal: real-time, full-3D kinematic motion capture with low encumbrance, **flexible** capture configurations

Our approach

Motivation

Overcoming limitations of previous methods

• Our method: **high fidelity**, full skeletal solve in **realtime**, with **modest hardware requirements**, low encumbrance and **flexible** capture environments

Foaturos / Approach	Optical	18411 [43]		Andrews			V	Trumble	0
reatures / Approach	[4]		KINECT	2010[0]	SIP [18]		vnect [12]	2017[16]	Ours
Realtime, online (video rates)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Outputs full 6DOF motion (incl. axial rotation)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
Outputs unambiguous 3D global position	\checkmark		\checkmark	\checkmark					\checkmark
Kinematic skeleton for animation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
Dynamic lighting and background	\checkmark		\checkmark						
Outdoor		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Robust to heavy occlusion		\checkmark		\checkmark	\checkmark				\checkmark
Long range (> 5m)	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Marker-less		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Subject fully unencumbered			\checkmark			\checkmark	\checkmark		

Realtime, unconstrained motion capture

- Combining complementary input modalities, multiple-view **video** and **IMU**s
 - Full **6DOF kinematic skeleton** solve suitable for character **animation** (axial rotation recovered from IMU input)
 - Drift-free **global 3D position** without depth ambiguity (multiple-view video)
 - Indoor or **outdoor, uncontrolled conditions**, e.g. moving background, changing illumination, heavy occlusion (no silhouettes, visual hulls or appearance consistency)
 - Minimal incumbrance (**no markers**, only a few IMUs)
 - **Flexible** hardware configuration (number of cameras and IMUs)
 - **Realtime, online** operation at video rates (efficient per-frame pose optimization rather than batch processing)

Approach

Approach

Data sources

- Inertial measurements
 - Xsens MTw IMUs, worn on body
 - Orientation
 - Acceleration
- 2D keypoint detections
 - Standard **video** input (no optical markers or IR cameras)
 - State-of-the art convolutional pose machine (CPM) detector [19]
 - Labelled keypoint (joint) position estimates
 - Detection confidences

Image: www.xsens.com

Overview

Hybrid kinematic solver using video and IMU input

- **Kinematic skeleton**, parameterised by a 66D pose vector **θ** containing:
 - Root translation (3D)
 - Root orientation (3D)
 - Joint rotations (3 x 20 non-root bones)
- Bone positions and orientations determined from parameter vector by forward kinematics:

• Minimization of a **cost function** yields the optimal parameter vector for each frame

Overview

- Cost function to optimize pose parameter vector **heta** based on sum of terms
- Optimized using **non-linear least squares** [5], initializing each frame with the previous frame

Orientation terms

Position terms

• Minimize the distance between the **projected solved keypoint** locations and the 2D keypoint **detections**

Acceleration terms

• Minimize the difference between the **solved** and **measured acceleration** at each IMU site

$$\hat{\mathbf{a}}_{i}^{g}(t-1) = \left(\hat{\mathbf{t}}_{i}^{g}(t) - 2\hat{\mathbf{t}}_{i}^{g}(t-1) + \hat{\mathbf{t}}_{i}^{g}(t-2) \right) / (\Delta t)^{2} \qquad \hat{\mathbf{a}}_{i}^{g}(t-1)^{2} \qquad \hat{\mathbf{a}}_{i}^{g}(t$$

Pos. (*t* - 1) Pos. (t - 2)t - 1) . target Pos. (*t*) Acc. meas. $\mathbf{a}_{i}^{g}(t-1)$ rientation Raw IMU acc. Gravity rame $= \mathbf{R}_{ig} \cdot \mathbf{R}_i(t-1) \cdot \mathbf{a}_i(t-1) - \mathbf{a}_g$

Pose prior terms

- The skeletal pose is not fully constrained by position and orientation data alone
- Prior terms are needed to encourage **plausible poses** (e.g. of the spine)
- **PCA** model from prior pose database
 - DOF excluding root joint invariance to position and heading
 - *k*-means clustering to avoid overrepresentation of common poses
 - 95% of the variance, dimensionality from 60 to 23

Visualization of pose principal components

Pose prior terms

• PCA **projection** prior - encourages the pose to lie close to a subspace of prior observed poses (*soft* **dimensionality reduction**)

$$E_{PP}(\boldsymbol{\theta}) = \rho_{PP} \left(\lambda_{PP} \left\| (\bar{\boldsymbol{\theta}} - \boldsymbol{\mu}) - \mathbf{M} \mathbf{M}^T (\bar{\boldsymbol{\theta}} - \boldsymbol{\mu}) \right\|_2^2 \right)$$

 PCA deviation prior - discourages deviation beyond the prior observed range of motion (*soft* joint limit)

$$E_{PD}(\boldsymbol{\theta}) = \rho_{PD} \left(\lambda_{PD} \left\| \operatorname{diag}(\boldsymbol{\sigma})^{-1} \mathbf{M}^{T} (\boldsymbol{\bar{\theta}} - \boldsymbol{\mu}) \right\|_{2}^{2} \right)$$

- The **CPM** keypoint detection [19] is a **bottleneck** (requiring > 150 ms per image)
- Aim to achieve video rate operation while detecting on **multiple** camera views
- CPM detector detect **multiple people** in a **single image**
- Solution: **pack regions of interest** from several input images into a single image for detection, then **resolve** to originating frame and camera
- **8x increase** in throughput

Packed ROI image for CPM detection (from frames *B* and *C*)

Results

Results

Overview

- **Quantitative** evaluation on **indoor** data (*Total Capture* dataset [16])
 - Number of cameras
 - Subsampling of 2D detections
 - Number of IMUs
 - 13 IMUs head, upper/lower back, upper/lower limbs and feet
 - 6 IMUs head, lower back, lower limbs (sparse)
 - Ablation study
- **Qualitative** evaluation on **outdoor** data, captured in **uncontrolled** conditions

Number of cameras

- Can use as **few as 2 cameras**
- Limited benefit in using more than 3-4 cameras
- In principle, a single camera could be used, but having multiple views avoids depth ambiguity
- No requirement for foreground segmentation or visual hulls, thus more freedom in capture environment and camera layout

2D detection subsampling

- Increase output frame-rate by performing expensive CPM detection on a subset of input frames
- High quality (**HQ**) setting detect on all frames (1/1), 8 cameras
- Hight speed (HS) detect on 2/8 frames, 4 cameras
- Best to detect 2 consecutive frames rather than 1 frame and shorter interval (bottom right-hand figure)

Number of IMUs and quality/speed trade-off

	S 1	S2	S2	S3	S3	S4	S5	S5	
	FS3	FS1	RM3	FS1	FS3	FS3	A3	FS1	Mean
Pos. error (cm)									
Ours, 13 IMU, HQ	7.4	5.3	3.9	6.7	6.7	6.4	6.4	7.0	6.2
Trumble [16]	9.4	16.7	9.3	13.6	8.6	11.6	14.0	10.5	11.7
Ours, 13 IMU, HS	8.5	5.4	3.8	7.4	7.3	7.7	6.6	7.5	6.8
Ours, 6 IMU, HQ	9.8	7.1	6.6	10.0	10.7	9.2	9.0	10.0	9.1
Ours, 6 IMU, HS	14.3	9.4	10.8	19.4	17.1	13.9	13.3	16.5	14.3
Ori. error (deg)									
Ours, 13 IMU, HQ	11.2	5.1	5.0	8.3	9.3	8.0	7.6	8.2	7.8
Ours, 13 IMU, HS	11.2	5.1	5.0	8.3	9.3	8.0	7.6	8.2	7.8
Ours, 6 IMU, HQ	16.3	9.2	8.7	13.2	15.7	13.0	11.8	12.1	12.5
Ours, 6 IMU, HS	18.3	10.9	10.6	16.2	19.7	14.8	14.3	15.1	15.0

Omitting terms from the cost function

- Orientation term important for removing jitter in position as well as disambiguating axial orientation
- Acceleration term has relatively small impact
- Position term important to lock down global 3D position (avoids run-away drift from double integration of noisy acceleration)
- PCA projection and deviation prior terms important for constraining pose

	13 IM	IUs	6 IMUs		
Terms Omitted	Pos.	Ori.	Pos.	Ori.	
IMU (E_R, E_A)	1.97	4.82	1.27	2.38	
Ori. (E_R)	2.63	6.27	1.54	2.89	
Acc. (E_A)	1.11	0.99	1.01	0.97	
Pos. (E_P)	188.58	1.00	194.82	1.05	
Prior (E_{PP}, E_{PD})	1.50	4.68	1.42	4.33	
Prior Proj. (E_{PP})	2.26	6.29	1.63	6.46	
Prior Dev. (E_{PD})	1.16	2.86	1.46	3.24	

Position and angle error with terms omitted (relative to full cost function below)

+

$$E(\boldsymbol{\theta}) = \widetilde{E_R(\boldsymbol{\theta}) + E_P(\boldsymbol{\theta}) + E_A(\boldsymbol{\theta})}$$

Data

Conclusion

- Hybrid motion capture approach
 - Full 6DOF kinematic solve
 - Drift-free 3D global translation
 - Unconstrained capture environment
 - Flexible, sparse input configurations
 - Real-time, online (suitable for on-set pre-vis, interactive applications)
- Future work
 - Improve real-time performance by using multiple GPUs for CPM detection
 - Extending to work with multiple people

[4] Vicon Blade. http://www.vicon.com

- [5] S. Agarwal, K. Mierle, and Others. Ceres solver. http://ceres-solver.org
- [6] S. Andrews, I. Huerta, T. Komura, L. Sigal. and K. Mitchell Real-time Physics-based Motion Capture with Sparse Sensors. CVMP2016
- [13] D. Roetenberg, H. Luinge, and P. Slycke. Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors. Technical report, pages 1–7, 2013
- [16] M. Trumble, A. Gilbert, C. Malleson, A. Hilton, and J. Collomosse. Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors. BMVC 2017
- [18] T. von Marcard, B. Rosenhahn, M. Black, and G. Pons-Moll. Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs. Eurographics 2017

[19] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional Pose Machines. CVPR 2016

Acknowledgements:

- This work was supported by the Innovate UK *Total Capture* project (grant 102685) and in part by the EU H2020 *Visual Media* project (grant 687800).
- We wish to thank Anna Korzeniowska, Evren Imre, Joao Regateiro and Armin Mustafa for their help with data capture.

Questions?