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Some Typical Processing Problems

Compression [ Visualization

Many interesting new contributions with a SP perspective
[Coifman, Maggioni, Kolaczyk, Ortega, Ramchandran, Moura, Lu, Borgnat]
or IP perspective [EIMoataz, Lezoray]
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Outline

e Introduction:

- Graphs and elements of spectral graph theory, with
emphasis on functional calculs

 Kernel Convolution:
- Localization, filtering, smoothing and applications

* An application to spectral clustering that unifies
some of the themes you’ve heard of during the

workshop: machine learning, compressive sensing,

optimisation algorithms, graphs

e
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Elements of Spectral Graph Theory

Reference: F. Chung, Spectral Graph Theory

(G
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Definitions

A graph G is given by a set of vertices and «relationships »
between them encoded in edges G = (V,F)

A set V of vertices of cardinality |V| = N
A set Fofedges: ee E, e=(u,v) withu,veV

Directed edge: e = (u,v), ¢ = (v,u) and e # ¢’
Undirected edge: e = (u,v), € = (v,u) and e =¢
A graph is undirected if it contains only undirected edges

A weighted graph has an associated non-negative weight function:
w:VxV >Rt (u,v)¢ E=wlu,v)=0

e

A
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Matrix Formulation

Connectivity captured via the (weighted) adjacency matrix
W (w,v) = w(w, V)  with obvious restriction for unweighted graphs
W(u,u) =0 20 loop
Let d(u) be the degree of u and D = diag(d) the degree matrix

Graph Laplacians, Signals on Graphs
L=D-W Lornormn = D_1/2£D_1/2
Graph signal: f:V — R

Laplacian as an operator on space of graph signals

= > w(u,v)(f(u) - f(v))

vr~YuU

A
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Some differential operators

The Laplacian can be factorized as £ = SS*

Explicit form of the incidence matrix (unweighted in this example):
e=(u,v)

1 u

S*f(u,v) = f(v) — f(u) is a gradient

Z g(u,v) — Z g(v',u) is a negative divergence
(u,v)eE (v u)eE

A
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Properties of the Laplacian

Laplacian is symmetric and has real eigenvalues
2 .
Moreover: (f, Lf) = Z w(u,v) — f (v)) > 0 Dirichlet form

positive semi-definite, non-negative eigenvalues
Spectrum: 0= A9 < A\ < ... Apax

(G connected: A\ >0

Ai =0 and A\j41 >0 G has i+1 connected components

Notation: (f,Lg) = f'Lg

e

A
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Measuring Smoothness

F L)y =3 (fu)— f(v))" 20

ur~v

is a measure of « how smooth » fis on G

Using our definition of gradient: V. f = {5 f(u,v),Vv ~ u}

Local variation ||Vufll2 = Z 5% f(u, v)]?

Total variation |f|Tv = Z IVufllz = Z Z |5 f(u, v)[?

ueV ueV VU

A
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Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010

Edge g
Derivative e

= Vw(m,n) [f(n) — f(m)]

m}GES s.t. e(m,n)]

[V = [ S w(m,n) [f(n) - f(m)]2]

nEN,

of
Graph -
S REE [{ae

Quadratic % Z ||vmf‘|g — Z w(m,n) [f(n) — f(qn)]2 = f'Lf

meV (m,n)e&

Form

A CFL O
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Smoothness of Graph Signals

f*L.f =0.14 f*Lof =1.31 f*Lsf = 1.81
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Remark on Discrete Calculus

Discrete operators on graphs form the basis of an interesting field
aiming at bringing a PDE-like framework for computational analysis
on graphs:

e Leo Grady: Discrete Calculus

e Olivier Lezoray, Abderrahim Elmoataz and co-workers: PDEs on
graphs:

- many methods from PDEs in image processing can be
transposed on arbitrary graphs

- applications in vision (point clouds) but also machine learning

(inference with graph total variation)

e

(G
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Laplacian eigenvectors

Spectral Theorem: Laplacian is PSD with eigen decomposition
L=D-W {(Aeswp)be=01,.. . N—1
L =UAU"

That particular basis will play the role of the Fourier basis:

Graph Fourier Transform, Coherence

F(he) := (f,up) Zf i) (i

1
1 := max |[(uy, 9;)| € [—, 1{ Graph Coherence

(G
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Important remark on eigenvectors

Optimal - Fourier case What does that mean 77

.- ’ :l ’ A .
Exgenvector assaciated 10 largest esgenvalee

Eigenvectors of modified path graph

ECOLE POLYTECHNIQUE
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Examples: Cut and Clustering

1 C(A,A)  1C(A,A)

A, B) A A ’ ——
C'( Z Wi, j] RatioCut( ) = 5 1A +3 a

1€A,jeB

| VIA/IA] ifie A
min RatioCut(A4, 4) fli] = — _
ACv ~JIAYA i

| £l = V/[V] and (f,1) =0
fiLf = |V|-RatioCut(A4, A)

= /[V] and (f,1) =0

Relaxeblem Looking for a smooth partition function

$ @ A
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Examples: Cut and Clustering

Spectral Clustering

arg min f'Lf subject tol|f|| = v/|V] and (f,1) =

fEeRIV]

By Rayleigh-Ritz, solution is second eigenvector u;

Remarks: Natural extension to more than 2 sets
Solution is real-valued and needs to be quantized.

In general, k-MEANS is used.

First k eigenvectors of sparse Laplacians via Lanczos,
complexity driven by eigengap |A\x — Ak+1]

Spectral clustering := embedding + k-MEANS

Vie Vi (up(i),... up_1(i))
e

A
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Graph Embedding/Laplacian Eigenmaps

Goal: embed vertices in low dimensional space, discovering geometry
(x1,---xzN) — (Y1,---YN)
T; € R? Y; € R¥ k< d

Good embedding: nearby points mapped nearby, so smooth map

A
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Graph Embedding/Laplacian Eigenmaps

Goal: embed vertices in low dimensional space, discovering geometry
(T1,---2N) = (Y1, YN)
z; € R y; €RF k< d
Good embedding: nearby points mapped nearby, so smooth map

minimize variations/ Wi, 11(ys — ;)2
Y 1
maximize smoothness of embedding ’

)]

Laplacian Eigenmaps
arg min y'Ly

A
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Laplacian Eigenmaps

SO T R
e S I

“. o J
Sare g — e . e .
N=5 t=50 N=10 t=50 N=15 t=50

&Ead | kg | Ny

N=5 t=250 N«10 =250 N=15 t=250

(8

N=10 tew= N=156 te=

A CFL O
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Remark on Smoothness

Linear / Sobolev case

Smoothness, loosely defined, has been used to motivate various
methods and algorithms. But in the discrete, finite dimensional

case, asymptotic decay does not mean much

VIR <M e fILf <M < MFOP <M
/

A
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Smoothness of Graph Signals Revisited

f*L,f =0.14 f*Lof = 1.31 f*Lsf = 1.81

i v @ -(Pﬂ.

FFDGRAI.F DF[ l E



26

Functional calculus

It will be useful to manipulate functions of the Laplacian

F(L), f:R—R

Lrap = )\? uy » polynomials

Symmetric matrices admit a (Borel) functional calculus

Borel functional calculus for symmetric matrices

Use spectral theorem on powers, get to polynomials
From polynomial to continuous functions by Stone-Weierstrass

Then Riesz-Markov (non-trivial !)

e

(G
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Example: Diffusion on Graphs

Consider the following « heat » diffusion model

0 d 5 ; ; ;
OF _ _ry S [ty ==Af(Lt)  f(£,0) = fo(6)

Ot
f (6,t) = e 1™ fo () f=et5f by functional calculus
Explicitly: Y S‘ 6—t>\e e(J)fo(J)
1€V ¥
= Z e~y (i) Z ue(J)fo(g)
14 jEV

= (e fo(C)u(i)

A

H“IYRAII Df IAl \\\F




Example: Diffusion on Graphs

28

examples of heat kernel on graph

e

A
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Simple De-Noising Example

29

Suppose a smooth signal fon a graph
VI3 <M & fiLf <M
| < M

Noisy
/|%’ “g/@j/—z\\ M 7\@} ° 2
But you observe only a noisy version y /9 & ol VG

A
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Simple De-Noising Example

De-Noising by Regularization

argmin|| f —y||3 s.t. f'Lf <M
f

axgmin |~y + 1277 > L fat o (fey) =0

Graph Fourier

— > Cro+3(Ro-iw)=o

vee{0,1,...,N — 1}

~ T
(0) = 7(¢)  “Low pass” filtering !
— > 0= i

Convolution with a kernel: j?(g)@()\g, T, 7“) = g(ﬁ; T, 7“)

@ I(I’flI
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Simple De-Noising Example

argmin {||f —y[I3 + /" LS}

P2 O AV - voF SN O ISXSE
08 y\&/" /v\\g};@} 46‘\5_ |§7k\ g/ ’ A /\\ZT/SZ\‘,\/\Q% >\/\ 08
i el S B Y Ege *al ¢
06 < ~ YA\ VA7 e /ARy N S 5 06
A o -l | 7N SNasy B
0.4 Vi - N & _
0.2 LN 0.5 AN 0.2
>3 E o d N2
° | S | R A
N 2 Sow / AL~ SO N
~02 __\/§ 05 'h\\g}yrz"iwf;‘é / g% 7 -0.2
-0.4 > X -0.4
: LN N
= > 1 >
-0.6 t/\'\> \’ s %g% -0.6
-0.8 4 \g:. - éﬁg ~e 08
-1 ~W 4 . 7 » p
Original Noisy Denoised

. T . i -
orgin 21—yl + L7 T > L fat 5 (f - y) =
:> ]?*(g) — - _I_TQ)\EQ(Z) “Low pass” filtering !

N—-1

Filtering: fout(Ae) = fin(A)h(Ae) Fout(i) = Y fin(Ne)(Ae)ue(d)

ECOLE POLYTECHNIQUE
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Convolution with a kernel and localization

(G
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‘“Convolutions” and *“Translations”

=Y [(O§(O)u(n)
14

Inherits a lot of properties of the usual convolution

associativity, distributivity, diagonalized by GFT

:Zug(n) — > [*go=
¢

L(fxg)=(Lf)*xg=fx*(Lg)

Use convolution to induce translations

(T:f)(n) == VN(f *&;) fo Yuh (i) ug(n)

= & A
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Localising a Kernel

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

* Action of the localisation operator on a spectral kernel

(T;f)(n) == VN(f*6;)(n) = VN Y f(O)ui (i)ue(n)

14

A
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The Agonizing Limits of Intuition

The Graph Fourier and Kronecker bases are not necessarily mutually

unbiased

o= I%%X\<ug,5i>| S [\/%, 1[

Laplacian eigenvectors (Fourier modes!) can be well localized
- phenomenon not yet fully understood, under intense study
- can be observed in lots of experimental data graphs
- not universal: known classes of random and regular graphs have
delocalized eigenvectors
1 < || Till2 € VNp
- the limit towards low coherence seems well-behaved

(all regular properties emerge)

- HOWEVER in average: 1 ,
Y Imiz=1
i=1

A
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Kernel Localization

The operator T should be understood as kernel localization:

From a kernel ¢(s) generate localized instances:

Kernel Localization

g:RT =R Tig(i) = > §(Ae)ug(i)ue(j)
¢

By functional calculus, the linear operator

fgl)f

1s the kernelized convolution.

AL
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Polynomial Localization

Given a spectral kernel g, construct the family of features:
bn(m) = (Tug)(m)  Pn(m) = VN Y G(A)ue(m)uy(n)
=0

Are these features localized ?

Polynomial Kernels are K-Localized

P (Ae) Zam if d(i,n) > K, then (Tjpx)(n) = 0

A
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Polynomial Localization

Given a spectral kernel g, construct the family of features:

bulm) = (Tug)(m)  du(m) = VN 3 §(he)ue(m)u(n)
=0

Are these features localized ?

Suppose the GFT of the kernel is smooth enough (K+1 different.)

Construct an order K polynomial approximation:

¢/ (m) = <5m, Py (£)5n> Exactly localized in a K-ball around n

n

On(m) = (0m,g(L)on) \ Should be well localized within

K-ball around n !
LTS 'm @

A
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Polynomial Localization - Extended

fis (K+41)-times differentiable:

in;{f{Hf — C]K||oo} <

Let Kzn = d(@,n) —1

_,1K+1
%3]

e

(Tig)(n)| < \/Npi%f { sup  |g(A) —p/KZL(A)} = VN inf {||g - pr;, |0}

A€[0, Amax]

in

Regular Kernels are Localized
If the kernel is d(i,n)-times differentiable:

. - 2\/_ max i 1 (dn)
(Tg)(m)] < [dm! (P’ g <A>|}

€[0,\max]
A

FFITRAI] m IM \\\F
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Polynomial Localization - Extended

Example: for the heat kernel G(\) = e~ ™

d'in din
(Tig) ()] _ 2N (TAmax \ ™" _ [ 2N e ((TAmax€

We can estimate an explicit measure of spread in terms of the degrees:

Hf||2 Zd \

TN)\maXGDZ T>\max62(DmaX—1) 2e g

A?(T;q) < e i | v 50
i (Tig) < 2m)? \ \

T—=0=Tig — &, A7(Tig) = 0

1
A2T %— dzn
e i) Z

o @

A
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Remark on Implementation

Not necessary to compute spectral decomposition

Polynomial approximation : Z ax(t)pr(x

| ex: Chebyshev minimax

0

0 N 40

Then wavelet operator expressed with powers of Laplacian:
K-—1

k
g(tL) ~ Z ai(t)L
k=0
And use sparsity of Laplacian in an iterative way

A
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Remark on Implementation

Wy(t,j) = (p(L)f7), Wi (t,5) — Wyt )] < Bl f]
sup norm control (minimax or Chebyshev)
N 1 Mn
Wf(tnvj) — <2cn,0f# + Z Cn,ka(L)f#>
k=1 j
)= a%(ﬁ — azl) (Tk—l(ﬁ)f) —Tra(L)f

Shifted Chebyshev polynomial

Computational cost dominated by matrix-vector multiply with

(sparse) Laplacian matrix

J
Complexity: O(Z M,|E|)  Note: “same” algorithm for adjoint !
n=1

$ @ A
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Original Image Noisy Image

Semi-Local Graph

A

- A~ ECOLE POLYTECHNIQUE
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Non-local Wavelet Frame

e Non-local Wavelets are ...

... Graph Wayvelets on Non-Local Graph

L%\
''''''

\\\\\

\\\\\\\\\
.

increasing scale
Interest: good adaptive sparsity basis

A
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Localization / Uncertainty

Competition between smoothness and localization in the spectral

representation of kernels

Remark: afai:C/dt]tf(t)IQ /dt|f,<t)|2
R

R

Smooth kernels can be used to construct controlled localized features

Example: Spectral Graph Wavelets

Localization /Smoothness generate sparsity (but more on that later)

o

A
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Summary so far

* We now have a simple black box theory to design

and apply linear filters on graph data

- results on localisation, uncertainty
- fast, scalable algorithm

- all sorts of filter banks studied and used in litterature

* We can use filter banks to construct graph
equivalent of linear transforms (wavelets, Gabor,..)

* We can extend stationary signal models

* (sub)-sampling theory

e

A
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Goal

Given partially observed information at the nodes of a graph

Can we robustly and efficiently infer missing information 7

What signal model ?

How many observations 7

Influence of the structure of the graph 7

48



Notations

L is real, symmetric PSD

orthonormal eigenvectors U € R™*™ Graph Fourier Matrix

non-negative eigenvalues A1 < Ao < ..., A\,

L = UAUT

k-bandlimited signals @ € R"

Fourier coefficients r=UTx

. nxk
Uk . (Ul, I ,Uk) c R first %k eigenvectors only



Sampling Model

peR” p;i>0 ||PH1:ZP7;:
P .= diag(p) € R**"

Draw independently m samples (random sampling)

Plw; =1) =p;, Vje{l,....,m}andVie{l,...,n}

50




Sampling Model

UTdill,  [lUFaill,
UTo, 2 H5zH2

= [[Udill,

How much a perfect impulse can be concentrated on first &k eigenvectors

Carries interesting information about the graph

Ideally:  p; large wherever ||[U]J;||, is large

Graph Coherence



Stable Embedding

Theorem 1 (Restricted isometry property). Let M be a random subsampling
matriz with the sampling distribution p. For any d,¢ € (0,1), with probability
at least 1 — e,

2

1 _
(=0l < — [MP~2 2| < (1+0) |3 (1)

for all € span(Uy) provided that

3 2k
m> 5 wh)? log (%)), 2)
MP—1/2 5 — P51/2|\/|a3 Only need M, re-weighting offline
(Vzlj)z >k Need to sample at least £ nodes

Proof similar to CS in bounded ONB but simpler since model is a subspace (not a union)
52



Stable Embedding

(szlf)2 >k Need to sample at least k nodes

Can we reduce to optimal amount ?

|UT6ill5
Variable Density Sampling p; = kk 2, =1, ..

)

is such that: (y£)2 — k  and depends on structure of graph

Corollary 1. Let M be a random subsampling matrix constructed with the sam-
pling distribution p*. For any d,e € (0,1), with probability at least 1 — e,
2

1
(=0 ally < —|MPT2 2| < (149) [l

for all € span(Uy) provided that

3 2k
m>5—2klog(—>. 53
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Recovery Procedures

y =Mz +n y c R™

x € span(Ug) stable embedding

Standard Decoder

min ‘Pg_zl/Q (I\/Iz—y)H
2

z€span(Uy) \

re-weighting for RIP

need projector

54



Recovery Procedures

y=Mzx+n y € R™

x € span(Ug) stable embedding

Efficient Decoder:

min

P2 (Mz — )H2+ o
zern || J 2 & ,

soft constrain on frequencies

efficient implementation

55



Analysis of Standard Decoder

Standard Decoder:

min
zespan(Uy)

‘P51/2 (Mz — y)H

2

Theorem 1. Let € be a set of m indices selected independently from {1, ... ,n}
with sampling distribution p € R™, and M the associated sampling matrix. Let
e,0 € (0,1) and m > & (vE)? log (28). With probability at least 1 — e, the
following holds for all € span(Uy) and all n € R™.

i) Let &* be the solution of Standard Decoder with y = Mx + n. Then,

— [, < &
, vm(1-9)

Exact recovery when noiseless ___

it) There exist particular vectors ng € R™ such that the solution x* of Stan-
dard Decoder with y = I\/Ia: —|— g satzsﬁes B

*

E:

56



Analysis of Efficient Decoder

Efficient Decoder:

min
zER™

P51/2 (Mz — y)H2

Filter reshapes Fourier coefficients

A

h:R—R xp := Udiag(h) UTx € R"
h=(h(A1),...,h(A,))T € R”

d d
p(t) = Zozi t’ x, = Udiag(p) UTx = Z o; L'a
i=0 i=0

Pick special polynomials and use e.g. recurrence relations for fast filtering

(with sparse matrix-vector multiply only)
57



Analysis of Efficient Decoder

Efficient Decoder:

min
zER™

Po'? (Mz — y)H + 427
2 |

non-decreasing = /

penalizes high-frequencies

Favours reconstruction of approximately band-limited signals

Ideal filter yields Standard Decoder

Z'Ak(t) — { 0 if t € [O,)\k],

+00 otherwise,

58



Analysis of Efficient Decoder

Theorem 1. Let 2, M, P, m as before and My.x > 0 be a constant such
that HI\/IP_l/QH2 < Muyax. Let €,6 € (0,1). With probability at least 1 — €, the
following holds for all x € span(Uyg), all m € R™, all v > 0, and all nonnegative

and nondecreasing polynomial functions g such that g(Ax+1) > 0.
Let x* be the solution of Efficient Decoder with y = Max +n. Then,

o~ al, < —— (2 . )H o
vm(l—9) VY9I A1) 2
g(Ax)
+ (Mmax\/go\km + vg(kk)> lezl :
(1)
and
. 1/2 9(Ak) -
171 < \/79()\1@+1 HP H +\/g(>‘k+1) ol ?

where a* = UpU] x* and B* := (I — UxU]) z*.

59



Analysis of Efficient Decoder

Noiseless case:

. 1 g(Ak) g(Ak)
|z* — x|, < \/m(l =) (MmaX\/g(Ak+1) + 79()‘16)> ], + \/g()\k+1) ||,

g(Ar) = 0 + non-decreasing implies perfect reconstruction

Otherwise:

choose 7 as close as possible to 0 and seek to minimise the ratio g(Ag)/g(Ag+1)

Choose filter to increase spectral gap 7

Clusters are of course good

. —1/2
Noise: |Pq P,/ |z,

60



Estimating the Optimal Distribution

Need to estimate ||U]d;]|5

Filter random signals with ideal low-pass filter:

Ty = Udiag()\l,...,)\k,O,...,O) UT r = UkUZT’

AL

E(re,, )7 = 8]UsUL E(rrT) UULS; = T8

In practice, one may use a polynomial approximation of the ideal filter and:

Zl 1( cAk)
Sy Yl (rh, )2

C 2n
L > 5210g(6>

~

Di ‘=




Estimating the Eigengap

Again, low-pass filtering random signals:

=9) >_||uLai, < ZZ m )i < (149) ZHUT5H
1=1

1=1 [=1
- 2
Since: 3 U84 = Uy [y = 7
=1

L
We have: (1 —24 ZZ TbA < (1+96) 57

1=1 [=1

N

Dichotomy using the filter bandwidth

62



Uniform distribution =

nbalanced clusters
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Optimal distribution p*
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Experiments

(b)

Original Reconstructed (sampling with p)
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

4428
= €2/2 —e3/3

by Johnson-Lindenstrauss

S |
» I @ © I
& 2 i | H & < ||
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

4428
= €2/2 —e3/3

by Johnson-Lindenstrauss

logn

Each feature map is smooth, therefore keep

6 5 k
m>5—2yk log 7

Use k-means on compressed data and feed into Efficient Decoder s



Compressive Spectral Clustering

recovery performance for k=20; e=¢ cI8; and Lrec

409

loghk = =
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Outlook
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Generalized

Operators

Computational
Harmonic Analysis Signal
Applications + Transforms /
. Dicti i
Spectral and Algebraic ictionaries
Graph Theory
+

Numerical Linear Algebra

Theoretical Scalable

Underpinnings Algorithms

e Application of graph signal processing techniques to real science and
engineering problems is in its infancy

e Connections with “traditional” signal processing, machine learning, ...
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