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Abstract
Multi-view video acquisition is widely used for reconstruction and free-viewpoint

rendering of dynamic scenes by directly resampling from the captured images. This
paper addresses the problem of optimally resampling and representing multi-view video
to obtain a compact representation without loss of the view-dependent dynamic surface
appearance. Spatio-temporal optimisation of the multi-view resampling is introduced
to extract a coherent multi-layer texture map video. This resampling is combined with
a surface-based optical flow alignment between views to correct for errors in geometric
reconstruction and camera calibration which result in blurring and ghosting artefacts. The
multi-view alignment and optimised resampling results in a compact representation with
minimal loss of information allowing high-quality free-viewpoint rendering. Evaluation
is performed on multi-view datasets for dynamic sequences of cloth, faces and people.
The representation achieves >90% compression without significant loss of visual quality.

1 Introduction
Image-based modelling from multi-view video acquisition enables photo-realistic rendering
of dynamic real-world scenes and actor performances from arbitrary viewpoints, referred to
as free-viewpoint rendering (FVR) [24]. Research has focused on multi-view reconstruction
to obtain a 3D proxy of the dynamic scene enabling FVR by resampling from the captured
images. Recent research has also addressed the problem of estimating temporally coher-
ent geometry by non-rigid alignment of the reconstructed surface sequence. However, only
limited attention has been paid to the representation of multi-view appearance.

Current approaches to FVR resample directly from the captured multi-view images at
each time frame, achieving a high level of photo-realism but requiring storage and trans-
mission of multi-video sequences. This is prohibitively expensive in both storage and band-
width required for multiple video streams limiting applications to local rendering on high-
performance hardware. To reduce the storage cost a single, static texture map per frame is
commonly extracted by resampling the captured multi-view images to a 2D texture domain.
This achieves a compact representation but results in loss of any view-dependent appear-
ance detail, such as specularities, and introduces visual artefacts of ghosting and blurring if
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φ : <3 → <2

Multi-View Frame 3D Reconstruction UV Domain Multi-Layer Texture Map

Figure 1: Overview of the resampling of multi-view video to a multi-layer texture video

there are errors in surface reconstruction or camera calibration. In this paper we address the
problem of optimal representation of appearance for dynamic objects, such as people, from
multi-view video acquisition. Figure 1 presents an overview of our approach mapping the
captured multi-view video to a multi-layer texture map. Our primary contributions are:

• Multi-layer texture map representation of view-dependent appearance to maintain FVR
quality in the presence of errors in geometry and calibration.

• Alignment of multi-view appearance to refine spatial coherence for resampling.

• Optimal sampling from multi-view video to maximise spatio-temporal coherence.

• Quantitative evaluation of rendering and storage for multi-layer texture map represen-
tation verses FVR from the captured images.

Optimal resampling and multi-layer texture map representation of multi-view video is evalu-
ated on reconstructions from dynamic sequences of cloth, faces and people wearing a variety
of clothing. Results demonstrate that the approach achieves a comparable visual quality to
direct FVR from the captured multi-view video with >90% reduction in storage/transmission
costs and improvements in rendering efficiency.

2 Related Work
Image and video-based modelling uses multi-view reconstruction to capture detailed object
geometry and render novel views by resampling from the captured images. Extraction of a
single surface texture map per frame combining the observed appearance from multi-view
images has been widely used to provide a compact representation.

The simplest approach is to blend overlapping image regions weighted according to sur-
face visibility for each camera [18]. This approach assumes accurate geometric reconstruc-
tion and camera calibration. In practice these errors commonly result in degradation of the
visual quality producing blurring and ghosting artefacts due to misalignment between camera
views projected onto the reconstructed surface. Correction of misalignment between multi-
view images, due to errors in geometry and camera calibration, is addressed for image-based
rendering in Floating Textures [10]. The approach performs online optical flow alignment
in the rendered image for a specific viewpoint to reduce visual artefacts. Recent work has
extended this approach to interactive video-based character animation using video-textures
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with similar online alignment [7]. These approaches achieve a high-level of visual real-
ism but require expensive real-time optic flow computation using a high-performance GPU
which is impractical for many applications. In this paper a surface-based optical flow ap-
proach is introduced to pre-compute and store the alignment between views. This achieves
a high-visual quality and removes the requirement for online optic flow alignment in the
rendered view [7, 10].

Offline approaches to align multi-view images of static objects have also been proposed
using sparse feature matching to reduce visual artefacts[1]. A number of approaches have
been proposed to generate spatially coherent texture maps of models reconstructed from
multi-view images [3, 11, 13, 15] which minimise visual artefacts due to view transitions.
These approaches cast the problem as a Markov Random Field (MRF) spatial optimisation to
find the labelling between mesh polygons and cameras images that minimise an energy func-
tion based on camera visibility and transitions in camera views between adjacent faces. The
energy function comprises two terms: a unary term defining a quality measure for assigning
a camera image to a polygon based on angle between the normal and camera direction [15]
and the projected area of the polygon [3, 13], maximising the sampling resolution; and a
pairwise term defining the cost of assigning camera images to adjacent polygons, commonly
defined as the colour distance at the edge of adjacent polygons [3, 11, 13, 15] to minimise
visible seams. This approach still results in some visible seams due to non-Lambertian re-
flectance and misalignment of appearance between views resulting from errors in the under-
lying surface geometry and calibration. To reduce visible artefacts, Gal et al. [11] propose
an extension[15] to allow alignment in the image domain to compensate for inaccuracies in
camera calibration and geometry and reduce the visibility of seams.

Goldlucke and Cremers [12] introduced a variational formulation for extract super-resolution
texture maps from multi-view images which achieves high-quality alignment and rendering
even from low-quality images. Recent research [21] extends texture super-resolution to con-
sider both spatial integration across multiple views and temporal integration over a short time
window.

Whilst these methods give impressive results they are limited to static scenes. Janko et
al. [13] extend MRF-based texture map extraction to dynamic scenes proposing two ap-
proaches: a spatially optimised texture map per frame; and a single texture map across all
frames. Independent spatial optimisation of multi-view sampling does not ensure temporal
coherence resulting in flicker artefacts due to camera labels switching over time. Extraction
of a single texture map for the entire sequence results in loss of dynamic appearance details
which are not modelled geometrically such as cloth or skin wrinkling. Existing approaches
to resampling from multi-view image capture result in a significant loss of visual quality.
Consequently, state-of-the-art approaches for video-based rendering of dynamic scenes re-
sample directly from the captured images to maintain visual quality.

In this paper we address the problem of optimisation of both spatial and temporal resam-
pling from multi-view video. Spatio-temporal optimisation of resampling is combined with
a dense surface based optical flow approach to correct for misalignment due to geometric and
calibration errors. This enables sampling of multi-view video into texture space to produce
a compact representation of the dynamic surface appearance which maintains visual quality
for free-viewpoint video rendering of captured scenes.
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3 Problem Statement: Optimal Multi-View Resampling
Multi-view video of a dynamic scene, such as an actor’s performance, is highly redundant
due to both the spatial overlap of camera views on the surface and the inherent temporal
coherence of surface appearance. However, both spatial and temporal changes in appearance
are important to maintain the realism of the captured video. Spatial changes in appearance
with viewpoint occur due to non-Lambertian reflectance together with any errors in recon-
structed surface shape and camera calibration. Temporal changes in appearance reproduce
the detailed surface dynamics, such as cloth wrinkling, hair and facial expression, which are
often not represented accurately in the reconstructed surface shape. Preserving the observed
spatio-temporal changes in surface appearance is required to maintain the realism in image-
based FVR. The problem of representation of dynamic surface appearance from multi-view
video addressed in this paper is defined as:

Optimal resampling of the captured views to obtain a compact representation without loss
of view-dependent dynamic surface appearance information.

Resampling and representation should satisfy the following competing requirements:

1. Minimal loss of information due to image resampling;

2. Efficient representation of information across multiple views to minimise data size for
storage, transmission and rendering;

3. Spatial coherence of view sampling in the texture domain such that adjacent texels are
sampled from the same view to minimise switches in viewpoint;

4. Temporally coherent representation such that the texel corresponding to the same sur-
face point is sampled from the same camera over time to minimise switches in camera;

5. Ordered sampling of multiple view observations of the same surface point according
to visibility to allow efficient rendering (angle to the camera view and surface-image
sampling resolution);

6. Texture layer alignment such that multiple observations of the same surface point at a
time-instant have the same texel location.

In order to efficiently represent the appearance information from multiple views whilst
minimising information loss, we introduce a layered texture map representation such that the
observations are resampled to a hierarchy of 2D texture layers according to surface visibil-
ity. Note that with the layered texture representation, if the number of layers is equal to the
number of views the observed information content in the multi-view video is preserved up
to the resampling from the captured 2D image domain to the 2D texture domain. This repre-
sentation allows a significant reduction in size by limiting the number of layers and reducing
the spatial and temporal redundancy in the captured camera images. If the representation
is reduced to a single layer at each frame this results in a conventional 2D texture map per
frame with optimal resampling of the multi-view video but loss of any view-dependent ap-
pearance. In the following section, we introduce the layered representation, spatio-temporal
optimisation for multi-view resampling and alignment to obtain an optimised representation
according to the requirements stated above.
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4 Optimal Multi-View Resampling and Representation

The input to our approach is a multi-view video sequence comprising a set of NC cam-
era views, {I j(t)}NC

j=1, together with a reconstructed and temporally aligned mesh sequence
M(t) = (T,V (t)) where T is the constant mesh topology and V (t) are the vertex positions
which change over time t = 1...NT . Temporally consistent mesh reconstruction can be
performed using a variety of multi-view reconstruction and surface alignment techniques
[5, 6, 8, 22]. The reconstructed mesh sequence M(t) provides a geometric proxy for FVR
from the captured multi-view video. In this paper, we address optimal resampling of multi-
view video to a layered texture map representation.

4.1 Layered Texture Representation

A reconstructed mesh surface manifold M ∈ℜ3 can be mapped to a 2D domain to obtain a
texture map image U ∈ℜ2. A number of approaches have been introduced to define texture
coordinates by either projection of the surface as a set of charts or continuous unwrapping
(pelting) of the surface [16, 17]. Surface projection is used throughout this work as this
minimises the distortion in the mapping between the 3D and 2D domains. Given video
from a set of NC camera views {I j(t)}NC

j=1 together with a mapping φ : ℜ3 → ℜ2 from the
mesh surface M to the texture domain U , which remains constant in time due to the constant
mesh topology, we can generate a set of NL ≤ NC texture layers {Up(t)}NL

p=1 for each time-
frame t. A straightforward approach would be to map each camera to a separate texture map
NL = NC, however this would not address the issue of spatial or temporal redundancy in the
input multi-view video. Instead, we use a hierarchy of NL texture maps ordered according
to the visibility of each mesh facet such that the first texture layer, U1, resamples from the
camera view from which each facet is most visible. Facet visibility is evaluated based on
the angle between the camera view direction and surface normal [9], and any inter-facet
occlusion. Other criteria such as camera sampling resolution could also be incorporated but
are not required for uniform camera spacing as used in this work.

This results in a layered hierarchy of texture maps Up with the NC input camera views
resampled to a set of NL texture maps. Due to the ordering of the texture map layers based
on surface visibility, the view-dependent appearance information required to maintain FVR
quality can be represented with NL � NC. For convenience, the layered texture represen-
tation also stores the pre-computed surface visibility for each facet from each camera in
the texture map alpha channel for subsequent rendering by weighted blending of the layers
according to surface visibility. Section 5 quantitatively evaluates the performance of the lay-
ered representation for FVR rendering demonstrating that for a typical NC = 8 multi-camera
setup, NL = 3 results in minimal loss compared to direct rendering from the original images.

The simple independent per facet mapping to the texture domain results in both spa-
tial and temporal fragmentation of the resampling from different camera views producing a
sub-optimal representation. This may result in visual artefacts due to adjacent mesh facets
sampling from different camera views resulting in discontinuities in appearance due to non-
Lambertian reflectance, incorrect geometry and inexact camera calibration [10]. Temporal
fragmentation will introduce high-frequency switching of camera views over time, resulting
in flicker artefacts. In this paper, we optimise the resampling from the original camera views
to maximise spatial and temporal coherence.
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4.2 Optimal Multiple View Video Resampling

Optimal resampling from multiple views requires spatial and temporal coherence of the rep-
resentation as set out in Section 3. The optimisation of spatio-temporal coherence is formu-
lated as a labelling problem of mesh facets to cameras. Formally, the problem can be cast as
a labelling problem where we seek the mapping L : F →C from the set of mesh facets F to
the set of cameras C = {1...NC} which assigns a camera label l f ∈C to each facet f ∈ F . We
formulate the computation of the optimal labelling L(t) as an energy minimisation of cost:

E(L(t)) = ∑
∀t
(Ev(L(t))+λsEs(L(t))+λtEt(L(t),L(t +1)). (1)

where Ev(L(t)) is the unary visibility cost for all faces F to be assigned camera labels L(t) at
time t, Es() is the spatial coherence cost which enforces consistent camera labelling between
adjacent mesh facets, and Et() is the temporal coherence cost which enforces temporal co-
herence of the camera labelling. In practice, the spatial and temporal coherence weight terms
are set to unity λs = λt = 1 as the costs are balanced. The unary visibility cost is given by:

Ev(L(t)) = ∑
f∈F

ev(l f (t)) (2)

where ev(l f (t)) is the visibility cost associated with facet f being assigned camera label l f at
time t. This cost is given by the angle between the facet normal n f (t) and the camera view
direction v(l f (t)) if the facet is visible:

ev(l f (t)) = 1− (n f (t) · v(l f (t)))2 (3)

or infinity if the facet is not visible. This visibility penalty is widely used in FVR for the
weighted combination of views [9]. Penalty terms which take into account the image sam-
pling resolution for each facet could also be used for non-uniform camera setups. Spatial
coherence of camera sampling is enforced by penalising different camera assignments for
adjacent faces:

Es(L(t)) = ∑
f∈F

(
1
|N f | ∑

r∈N f

es(l f (t), lr(t))

)
(4)

where N f is the 1-neighbourhood of facet f , and es(l f (t), lr(t)) = 1−v(l f (t)) ·v(lr(t)) if both
facets are visible for assigned camera labels, otherwise infinity.

Similarly, temporal coherence is enforced by penalising different camera assignments for
the same facet at consecutive frames:

Et(L(t),L(t +1)) = ∑
f∈F

et(l f (t), l f (t +1)) (5)

where et(l f (t), l f (t +1)) = 0 : l f (t) = l f (t +1)∨1 : l f (t) 6= l f (t +1). Optimisation of equa-
tion 1 for multi-view sequences is performed efficiently using graph cut αβ -swap [2, 4].
Label assignment is represented as a graph with mesh faces as nodes and edges representing
facet adjacency. Optimisation of a mesh with 5K faces for 8 camera views takes approxi-
mately 1-2 seconds per frame for typical free-viewpoint video sequences of 15-20 seconds.
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4.3 Multiple View Texture Alignment
Simple projection and blending of camera views using the approximate reconstructed mesh
geometry leads to blurring and ghosting artefacts. These artefacts are caused by misalign-
ment between overlapping camera images projected onto the mesh surface from inaccurate
geometry and camera calibration. In order to minimise these artefacts, we use optical flow
based image warping to correct misalignments before sampling into the texture domain. Pre-
vious approaches [7, 10] have used online optic flow computation in the rendered view. In
this work we introduce a pre-computation of the alignment using a surface based optic flow.

(a) Projectively textured geometry Ri i = 1...5 (b) Rendered Image R j
3 for j = 1...5)

(c) Optical flow Oi→ j between rendered image R3
3 and R j

3 for
j = 1..5. Optical flow colour mapped to direction

Figure 2: Optical flow correspondence between camera views
To establish optical flow between camera views, we first render the geometry from the

viewpoint of camera Ci and projectively texture using the image of camera C j for all NC

cameras. This results in N2
C rendered images, R j

i , which denotes the image rendered from
the ith camera viewpoint using the jth camera image. An optical flow correspondence field,
Oi→ j, is computed between the rendered image Ri = Ri

i and R j
i where i 6= j. Optical flow is

known to give unreliable flow vectors in the presence of occlusions where it is undefined. To
mitigate such errors, a binary confidence score is assigned to each flow vector based on depth
discontinuities (taken from a rendered depth map of the geometry) and occlusions (computed
by identifying vertices visible in Ci but occluded in C j). Fig. 2 shows such artefacts in black,
indicating zero confidence scores S j

i . A correction vector is applied to the projected point in
the camera domain to take into account the projection error. The magnitude of the correction
vector is given by a weighted average of all visible and high-confidence flow vectors:

Vi =
NC

∑
j=1

ω jS
j
i Oi→ j (6)

where multiplication of fields occurs on a per-pixel basis, and Vi is the field of correction
vectors for the ith camera, ω j is a scalar weight such that ∑

NC
j=1 ω j = 1. In our experiments

we use uniform weighting, however this could be varied to prioritise particular cameras. Op-
timal resampling of the captured multi-view images as a layered texture map representation
(section 4.1) is achieved by combining the optical flow alignment of the captured images on
the reconstructed surface with the spatio-temporal optimisation of camera label assignments
for each mesh facet (section 4.2). This ensures that: (1) rendering artefacts due to incorrect
geometry are minimised and texels in different layers correspond to observations of the same
surface point; (2) multi-view images are sampled to optimise the spatial coherence between
views and minimise changes in camera view; and (3) the representation is temporally coher-
ent such that switches in camera viewpoint over time are minimised. This leads to an efficient
view-dependent representation of the multi-view video with minimal loss of information.
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5 Evaluation

Evaluation is performed on four different multi-view video datasets shown in Figure 3. Char-
acter 1 and Dan were captured using eight cameras in a circle of 8 metre diameter giving full
360 degree coverage of the subject with reconstruction [19] and temporal alignment [5]. Face
and Cloth were captured using five cameras in a frontal configuration with reconstruction and
alignment [14]. Dataset and storage requirements are summarised in Table 1, all video was
captured at 1920x1080 HD-SDI at 25P. Datasets available for research: cvssp.org/cvssp3d.

Figure 3: Single camera image from evaluated datasets: Character 1; Cloth; Dan; Face.

Texture Alignment: Results of the proposed surface-based optical flow alignment (section
4.3) are presented in Figure 6 for the Dan, Face and Cloth examples. For Dan and Face
examples U1 is show before (left) and after (right) alignment with a heat map (centre) high-
lighting the difference. In the Cloth example, NL = 3 are blended into a conventional texture
map to highlight ghosting and blurring artefacts. Before alignment large misalignments exist
between different views, visible in the close-ups, which produce ghosting and blurring arte-
facts during rendering. After alignment these errors are corrected resulting in a sharp texture
as is visible in the close-ups for the cloth-example.

Rendering Quality: FVR quality with the proposed multi-layer texture vs. direct resam-
pling of the captured multi-view video is evaluated using an open-source render [20] as a
benchmark. Structural Similarity Index Measure (SSIM) [23] which has been shown to cor-
relate with perceived image quality is used to evaluate the rendering quality. Evaluation is
performed for views mid-way between the capture cameras to test the hardest FVR case.
Figure 4 presents two evaluations of rendering quality for Dan/Cloth datasets: (a) with re-
spect to resampling optimisation approach ( no-optimisation (NO), spatial optimisation only
(SO) and spatio-temporal optimisation (TO)); and (b) with respect to texture image resolu-
tion using TO. This demonstrates that the optimisation method has no effect on the rendering
quality for NL > 2, as it is essentially the same texture information just assigned to differ-
ent layers. Secondly evaluation of texture resolution shows that rendering quality remains
the same for > 10242. Importantly for the Dan character dataset captured, with surrounding
cameras, rendering quality remains constant for NL≥ 3 indicating only 3 layers are required.
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(a) Evaluation of optimisation: Dan at 512 resolution
(left); Cloth at 1024 resolution (right)
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(b) Evaluation of resolution: Dan using TO (left);
Cloth using TO (right)

Figure 4: Free-viewpoint rendering quality for multi-layer texture vs. raw multi-view video
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Representation Size: Evaluation of the multi-layer representation vs. captured video size is
presented in Figure 5: (a) shows that spatio-temporal optimisation gives the best compression
due to the increase in coherence in space and time; and (b) shows the size with increasing
texture resolution. For the Cloth dataset, with NL=NC=5, using TO further reduces the over-
all storage by a further 2% compared to NO, this represents a 20MB reduction. Table 1
shows results for all datasets for 512 and 1024 texture sizes after MPEG video-compression
compared to the captured data compressed using the same codec.
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(a) Evaluation of optimisation: Dan at 512 resolution
(left); Cloth at 1024 resolution (right)
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(b) Evaluation of texture resolution: Dan using TO
(left); Cloth using TO (right)

Figure 5: Representation size reduction for multi-layer texture vs. captured multi-view video

Dataset NC NT Captured Video (MB) Multi-layer Texture Video (MB)
Raw Compressed 512 1024

Character 1 8 31 1800 61 4.5 (93%) 10 (84%)
Cloth 5 310 11400 906 42 (95%) 112 (88%)
Dan 8 27 1600 57 3.8 (93%) 9 (84%)
Face 5 355 13100 386 26 (93%) 72 (81%)

Table 1: Dataset size for captured data and multi-layer texture video compression for reso-
lution 512 and 1024 (Using TO and NL = 3)

6 Conclusions
A method has been presented for optimisation of the resampling from multi-view video se-
quences of a reconstructed surface into a multi-layer 2D texture map representation to obtain
a compact, spatially and temporal coherent representation that minimises the loss of infor-
mation from the captured data to maintain FVR quality. Spatio-temporal optimisation is
introduced to enforce consistency of camera sampling both spatially across the surface and
temporally. This is combined with a surface-based optical flow alignment of the multiple
view image projection on the reconstructed surface to minimise artefacts due to errors in
geometry and camera calibration. This allows pre-computation and storage of the align-
ment for efficient high-quality rendering without blur and ghosting artefacts. In order to
efficiently represent the appearance information from multiple views, a multi-layer texture
map representation with layers ordered according to surface visibility is proposed. This rep-
resents view-dependent dynamic surface appearance detail for high-quality FVR. Typically
3-4 texture layers are required for capture systems with 8 cameras eliminating the inherent
redundancy in multiple view capture without any significant loss of visual detail. Quan-
titative evaluation is performed on multiple view datasets for dynamic sequences of cloth,
faces, and people. This demonstrates that the proposed approach results in an efficient rep-
resentation that preserves the visual quality of the captured multi-view video for FVR whilst
achieving approximately >90% reduction in size. The approach achieves compact represen-
tation of multiple view sequences to support video-based FVR without compromising visual
quality or the requirement for large amounts of storage and bandwidth.
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Layer 1 - No Alignment Difference Layer 1 - With Alignment

(a) Layer 1 from frame in Dan dataset with (right) and without (left) flow correction.

Layer 1 - No Alignment Difference Layer 1 - With Alignment

(b) Layer 1 from frame in Face dataset with (right) and without (left) flow correction.

No Alignment Difference With Alignment

(c) Single texture map from cloth dataset with (right) and without (left) flow correction

Figure 6: Results of surface-based optical flow alignment of appearance from multiple views

7 Acknowledgements
This research was supported by the EU-FP7 project RE@CT, BBC/EPSRC iCase Studentship
and EPSRC Visual Media Platform Grant EP/F02827X. The authors would also like to thank
Martin Klaudiny for providing the face and cloth datasets used in the evaluation.

http://react-project.eu


VOLINO ET AL.: OPTIMAL REPRESENTATION OF MULTI-VIEW VIDEO 11

References
[1] E. Aganj, P. Monasse, and R. Keriven. Multi-view texturing of imprecise mesh. In

Asian Conference on Computer Vision, 2009.

[2] K. Alahari, P. Kohli, and P.H.S. Torr. Reduce, reuse & recycle: Efficiently solving
multi-label MRFs. In CVPR, pages 1–8, 2008.

[3] C. Allene, J.P. Pons, and R. Keriven. Seamless image-based texture atlases using multi-
band blending. In ICPR, pages 1–4, 2008.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Trans.PAMI, 23(11):1222–1239, 2001.

[5] C. Budd, P. Huang, M. Klaudiny, and A. Hilton. Global Non-rigid Alignment of Surface
Sequences. International Journal of Computer Vision, 102(1-3):256–270, 2012.

[6] C Cagniart, E Boyer, and S Ilic. Probabilistic deformable surface tracking from multi-
ple videos. ECCV 2010, pages 1–14, 2010.

[7] D. Casas, M. Volino, J. Collomosse, and A. Hilton. 4d video textures for interactive
character appearance. Computer Graphics Forum (Proc. EUROGRAPHICS 2014), 33
(2):371–380, 2014.

[8] E. de Aguiar, C. Stoll, and C. Theobalt. Performance capture from sparse multi-view
video. In ACM SIGGRAPH, pages 1–10, 2008.

[9] P. Debevec, Y. Yu, and G. Borshukov. Efficient view-dependent image-based rendering
with projective texture-mapping. In ACM SIGGRAPH, 1998.

[10] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. de Aguiar, N. Ahmed,
C. Theobalt, and A. Sellent. Floating Textures. Computer Graphics Forum, 27(2):
409–418, 2008.

[11] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or. Seamless Montage for Tex-
turing Models. Computer Graphics Forum, 29(2):479–486, 2010.

[12] B. Goldluecke and D. Cremers. Superresolution texture maps for multiview reconstruc-
tion. In ICCV, 2009.

[13] Z. Jankó and J.P. Pons. Spatio-temporal image-based texture atlases for dynamic 3-D
models. In ICCV Workshops, pages 1646–1653, 2009.

[14] M. Klaudiny, C. Budd, and A. Hilton. Towards optimal non-rigid surface tracking. In
ECCV, pages 743–756, 2012.

[15] V. Lempitsky and D. Ivanov. Seamless Mosaicing of Image-Based Texture Maps. In
CVPR, pages 1–6, 2007.

[16] D. Piponi and G. Borshukov. Seamless texture mapping of subdivision surfaces by
model pelting and texture blending. In ACM SIGGRAPH, pages 471–478, 2000.



12 VOLINO ET AL.: OPTIMAL REPRESENTATION OF MULTI-VIEW VIDEO

[17] Alex Rav-Acha, Pushmeet Kohli, Carsten Rother, and Andrew Fitzgibbon. Unwrap
mosaics: A new representation for video editing. ACM Trans. on Graphics, 27(3):
17:1–17:11, 2008.

[18] J. Starck and A. Hilton. Model-based multiple view reconstruction of people. In IEEE
International Conference on Computer Vision, pages 915–922, 2003.

[19] J. Starck and A. Hilton. Surface capture for performance-based animation. IEEE Com-
puter Graphics and Applications, pages 21–31, 2007.

[20] J. Starck, J. Kilner, and A. Hilton. A Free-Viewpoint Video Renderer. Journal of
Graphics, GPU, and Game Tools, 14(3):57–72, 2009.

[21] V. Tsiminaki, J.-S. Franco, and E. Boyer. High-resolution 3D Shape Texture from
Multiple Videos. In CVPR, pages 1—8, 2014.

[22] D Vlasic, I Baran, W Matusik, and J Popović. Articulated mesh animation from multi-
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