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Motivation and Contributions

Limitations of existing multiple wide-baseline dynamic scene reconstruc-
tion technique:

1. They work in controlled environments;

2. Assumption of known background appearance and structure;

3. Fixed and calibrated cameras.

Contributions:

1. An automatic method for initial coarse dynamic scene reconstruction
without prior knowledge of background appearance or structure;

2. A robust approach for joint segmentation refinement and dense recon-
struction of dynamic scenes from wide-baseline moving cameras.

JUGGLER DATASET
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Segmentation and reconstruction for publicly available Juggler dataset
captured with only moving cameras using proposed method

Framework for proposed general scene reconstruction
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1. Depth at each pixel p is assigned from a set of depth values D = {dy, ...,d|p|_1, U }. Each d; is obtained by sampling the optical ray from the camera
and U is an unknown depth value to handle occlusions and to refine object segmentation.

2. Energy minimization of the cost function is performed: E(d) = Ajata Faata(d) + Acontrast Econtrast(d) + Asmooth Esmootn (d)

3. Each dynamic object with the region R; + R is processed separately.

4. We divide our depth labels in two sets, one for the region R; (D;) and other for Rp (Do) such that |D;| < |Do

5. The equation consist of three terms: the data term is for the photo-consistency scores, the smoothness term is to avoid sudden peaks in depth and
maintain the consistency and the contrast term is to identity the object boundaries.

Results and Evaluation
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Juggler Sequence

Segmentation and depth Reconstruction

Comparison of computational efficiency
Summary:

1. The proposed approach allows unsupervised reconstruction without prior information on scene appearance or structure.
2. The segmentation and reconstruction accuracy are significantly improved over previous methods allows application to more general dynamic scenes.
3. Tests on challenging datasets demonstrate improvements in quality of reconstruction and segmentation compared to state-of-the-art methods.
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