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Abstract. This paper presents a method for dense 4D temporal align-
ment of partial reconstructions of non-rigid surfaces observed from single
or multiple moving cameras of complex scenes. 4D Match Trees are intro-
duced for robust global alignment of non-rigid shape based on the similar-
ity between images across sequences and views. Wide-timeframe sparse
correspondence between arbitrary pairs of images is established using
a segmentation-based feature detector (SFD) which is demonstrated to
give improved matching of non-rigid shape. Sparse SFD correspondence
allows the similarity between any pair of image frames to be estimated for
moving cameras and multiple views. This enables the 4D Match Tree to
be constructed which minimises the observed change in non-rigid shape
for global alignment across all images. Dense 4D temporal correspon-
dence across all frames is then estimated by traversing the 4D Match
tree using optical flow initialised from the sparse feature matches. The
approach is evaluated on single and multiple view images sequences for
alignment of partial surface reconstructions of dynamic objects in com-
plex indoor and outdoor scenes to obtain a temporally consistent 4D
representation. Comparison to previous 2D and 3D scene flow demon-
strates that 4D Match Trees achieve reduced errors due to drift and
improved robustness to large non-rigid deformations.

Keywords: Non-sequential tracking, surface alignment, temporal co-
herence, dynamic scene reconstruction, 4D modeling

1 Introduction

Recent advances in computer vision have demonstrated reconstruction of com-
plex dynamic real-world scenes from multiple view video or single view depth
acquisition. These approaches typically produce an independent 3D scene model
at each time instant with partial and erroneous surface reconstruction for moving
objects due to occlusion and inherent visual ambiguity [1,2,3,4]. For non-rigid
objects, such as people with loose clothing or animals, producing a temporally
coherent 4D representation from partial surface reconstructions remains a chal-
lenging problem.
In this paper we introduce a framework for global alignment of non-rigid shape
observed in one or more views with a moving camera assuming that a partial



2 Armin Mustafa, Hansung Kim, Adrian Hilton

Fig. 1. 4D Match Tree framework for global alignment of partial surface reconstructions

surface reconstruction or depth image is available at each frame. The objective
is to estimate the dense surface correspondence across all observations from sin-
gle or multiple view acquisition. An overview of the approach is presented in
Figure 1. The input is the sequence of frames {Fi}Ni=1 where N is the number
of frames. Each frame Fi consists of a set of images from multiple viewpoints
{Vc}Mc=1, where M is the number of viewpoints for each time instant (M ≥ 1).
Robust sparse feature matching between arbitrary pairs of image observations of
the non-rigid shape at different times is used to evaluate similarity. This allows
a 4D Match Tree to be constructed which represents the optimal alignment path
for all observations across multiple sequences and views that minimises the to-
tal dissimilarity between frames or non-rigid shape deformation. 4D alignment is
then achieved by traversing the 4D match tree using dense optical flow initialised
from the sparse inter-frame non-rigid shape correspondence. This approach al-
lows global alignment of partial surface reconstructions for complex dynamic
scenes with multiple interacting people and loose clothing.

Previous work on 4D modelling of complex dynamic objects has primarily fo-
cused on acquisition under controlled conditions such as a multiple camera studio
environment to reliably reconstruct the complete object surface at each frame
using shape-from-silhouette and multiple view stereo[5,6,7]. Robust techniques
have been introduced for temporal alignment of the reconstructed non-rigid
shape to obtain a 4D model based on tracking the complete surface shape or
volume with impressive results for complex motion. However, these approaches
assume a reconstruction of the full non-rigid object surface at each time frame
and do not easily extend to 4D alignment of partial surface reconstructions or
depth maps.

The wide-spread availability of low-cost depth sensors has motivated the de-
velopment of methods for temporal correspondence or alignment and 4D mod-
elling from partial dynamic surface observations [8,9,10,11]. Scene flow tech-
niques [12,13] typically estimate the pairwise surface or volume correspondence
between reconstructions at successive frames but do not extend to 4D align-
ment or correspondence across complete sequences due to drift and failure for
rapid and complex motion. Existing feature matching techniques either work in
2D[14] or 3D[15] or for sparse [16,17] or dense[18] points. However these meth-
ods fail in the case of occlusion, large motions, background clutter, deformation,
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moving cameras and appearance of new parts of objects. Recent work has in-
troduced approaches, such as DynamicFusion [8], for 4D modelling from depth
image sequences integrating temporal observations of non-rigid shape to resolve
fine detail. Approaches to 4D modelling from partial surface observations are
currently limited to relatively simple isolated objects such as the human face
or upper-body and do not handle large non-rigid deformations such as loose
clothing.
In this paper we introduce the 4D Match Tree for robust global alignment of
partial reconstructions of complex dynamic scenes. This enables the estimation
of temporal surface correspondence for non-rigid shape across all frames and
views from moving cameras to obtain a temporally coherent 4D representation
of the scene. Contributions of this work include:
– Robust global 4D alignment of partial reconstructions of non-rigid shape

from single or multiple-view sequences with moving cameras
– Sparse matching between wide-timeframe image pairs of non-rigid shape

using a segmentation-based feature descriptor
– 4D Match Trees to represent the optimal non-sequential alignment path

which minimises change in the observed shape
– Dense 4D surface correspondence for large non-rigid shape deformations us-

ing optic-flow guided by sparse matching

1.1 Related Work

Temporal alignment for reconstructions of dynamic scenes is an area of exten-
sive research in computer vision. Consistent mesh sequences finds application in
performance capture, animation and motion analysis. A number of approaches
for surface reconstruction [19,20] do not produce temporally coherent models for
an entire sequence rather they align pairs of frames sequentially. Other methods
proposed for 4D alignment of surface reconstructions assume that a complete
mesh of the dynamic object is available for the entire sequence [21,22,23,24,25].
Partial surface tracking methods for single view [26] and RGBD data [8,27] per-
form sequential alignment of the reconstructions using frame-to-frame tracking.
Sequential methods suffer from drift due to accumulation of errors in align-
ment between successive frames and failure is observed due to large non-rigid
motion. Non-sequential approaches address these issues but existing methods
require complete surface reconstruction[24,25]. In this paper we propose a non-
sequential method to align partial surface reconstructions of dynamic objects for
general dynamic outdoor and indoor scenes with large non-rigid motions across
sequences and views.
Alignment across a sequence can be established using correspondence informa-
tion between frames. Methods have been proposed to obtain sparse [16,17,14] and
dense [15,18,13] correspondence between consecutive frames for entire sequence.
Existing sparse correspondence methods work sequentially on a frame-to-frame
basis for single view [14] or multi-view [16] and require a strong prior initializa-
tion [17]. Existing dense matching or scene flow methods [12,13] require a strong
prior which fails in the case of large motion and moving cameras. Other methods
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are limited to RGBD data [18] or narrow timeframe [15,28] for dynamic scenes.
In this paper we aim to establish robust sparse wide-timeframe correspondence
to construct 4D Match Trees. Dense matching is performed on the 4D Match
Tree non-sequentially using the sparse matches as an initialization for optical
flow to handle large non-rigid motion and deformation across the sequence.

2 Methodology

The aim of this work is to obtain 4D temporally coherent models from par-
tial surface reconstructions of dynamic scenes. Our approach is motivated by
previous non-sequential approaches to surface alignment [29,24,30] which have
been shown to achieve robust 4D alignment of complete surface reconstructions
over multiple sequences with large non-rigid deformations. These approaches
use an intermediate tree structure to represent the unaligned data based on a
measure of shape similarity. This defines an optimal alignment path which min-
imises the total shape deformation. In this paper we introduce the 4D Match
Tree to represent the similarity between unaligned partial surface reconstruc-
tions. In contrast to previous work the similarity between any pair of frames is
estimated from wide-timeframe sparse feature matching between the images of
the non-rigid shape. Sparse correspondence gives a similarity measure which ap-
proximates the overlap and amount of non-rigid deformation between images of
the partial surface reconstructions at different time instants. This enables robust
non-sequential alignment and initialisation of dense 4D correspondence across
all frames.

2.1 Overview

An overview of the 4D Match Tree framework is presented in Figure 1. The
input is a partial surface reconstruction or depth map of a general dynamic
scenes at each frame together with single or multiple view images. Cameras may
be static or moving and camera calibration is assumed to be known or estimated
together with the scene reconstruction [31,32,3,20]. The first step is to estimate
sparse wide-timeframe feature correspondence. Robust feature matching between
frames is achieved using a robust segmentation-based feature detector (SFD)
previously proposed for wide-baseline stereo correspondence [33]. The 4D Match
Tree is constructed as the minimum spanning tree based on the surface overlap
and non-rigid shape similarity between pairs of frames estimated from the sparse
feature correspondence. This tree defines an optimal path for alignment across all
frames which minimises the total dissimilarity or shape deformation. Traversal
of the 4D Match Tree from the root to leaf nodes is performed to estimate dense
4D surface correspondence and obtain a temporally coherent representation.
Dense surface correspondence is estimated by performing optical flow between
each image pair initialised by the sparse feature correspondence. The 2D optical
flow correspondence is back-projected to the 3D partial surface reconstruction to
obtain a 4D temporally coherent representation. The approach is evaluated on
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Fig. 2. Comparison of feature detectors for wide-timeframe matching on 3 datasets.

publicly available benchmark datasets for partial reconstructions of indoor and
outdoor dynamic scenes from static and moving cameras: Dance1[34]; Dance2,
Cathedral, Odzemok,[35]; Magician and Juggler [36].

2.2 Robust wide-timeframe sparse correspondence

Sparse feature matching is performed between any pair of frames to obtain an ini-
tial estimate of the surface correspondence. This is used to estimate the similarity
between observations of the non-rigid shape at different frames for construction
of the 4D Match Tree and subsequently to initialize dense correspondence be-
tween adjacent pairs of frames on the tree branches. For partial reconstruction
of non-rigid shape in general scenes we require feature matching which is robust
to both large shape deformation, change in viewpoint, occlusion and errors in
the reconstruction due to visual ambiguity. To overcome these challenges sparse
feature matching is performed in the 2D domain between image pairs and pro-
jected onto the reconstructed 3D surface to obtain 3D matches. In the case of
multiple view images consistency is enforced across views at each time frame.
Segmentation-based Feature Detection: Several feature detection and match-
ing approaches previously used in wide-baseline matching of rigid scenes have
been evaluated for wide-timeframe matching between images of non-rigid shape.
Figure 2 and Table 1 present results for SIFT[37], FAST[38] and SFD[33] fea-
ture detection. This comparison shows that segmentation-based feature detector
(SFD)[33] gives a relatively high number of correct matches. SFD detects key-
points at the triple points between segmented regions which correspond to local
maxima of the image gradient. Previous work showed that these keypoints are
stable to change in viewpoint and give an increased number of accurate matches
compared to other widely used feature detectors. Results indicate that SFD can
successfully establish sparse correspondence for large non-rigid deformations as
well as changes in viewpoint with improved coverage and number of features.
SFD features are detected on the segmented dynamic object for each view c and
the set of initial keypoints are defined as: Xc = {xcF0

, xcF1
, ..., xcFN

}. The SIFT
descriptor[37] for each detected SFD keypoint is used for feature matching.
Wide-timeframe matching: Once we have extracted keypoints and their de-
scriptors from two or more images, the next step is to establish some preliminary
feature matches between these images. As the time between the initial frame and
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No. of matches Dance1 Dance2 Odzemok Cathedral Magician Juggler

SFD 416 1233 916 665 392 547

SIFT 124 493 366 301 141 273

FAST 57 96 82 77 53 68
Table 1. Number of sparse wide-timeframe correspondences for all datasets.

Fig. 3. Sparse feature matching and dense correspondence for the Odzemok dataset:
(a)Color coding scheme, (b) Dense matching with and without the sparse match ini-
tialization and, (c) Sparse and dense correspondence example

the current frame can become arbitrarily large, robust matching technique are
used to establish correspondences. A match scFi,Fj

is a feature correspondence

scFi,Fj
= (xcFi

, xcFj
), between xcFi

and xcFj
in view c at frames i and j respectively.

Nearest neighbor matching is used to establish matches between keypoints xcFi

from the ith frame to candidate interest points xcFj
in the jth frame. The ra-

tio of the first to second nearest neighbor descriptor matching score is used to
eliminate ambiguous matches (ratio < 0.85). This is followed by a symmetry
test which employs the principal of forward and backward match consistency
to remove the erroneous correspondences. Two-way matching is performed and
inconsistent correspondences are eliminated. To further refine the sparse match-
ing and eliminate outliers we enforce local spatial coherence in the matching.
For matches in an m ×m (m = 11) neighborhood of each feature we find the
average Euclidean distance and constrain the match to be within a threshold
(±η < 2 ∗Average Euclidean distance).
Multiple-view Consistency: In the case of multiple views (M > 1) consis-
tency of matching across views is also enforced. Each match must satisfying the

constraint:
∥∥∥sc,cFi,Fj

− (sc,kFj ,Fj
+ sk,kFi,Fj

+ sc,kFi,Fi
)
∥∥∥ < ε (ε = 0.25). The multi-view

consistency check ensures that correspondences between any two views remain
consistent for successive frames and views. This gives a final set of sparse matches
of the non-rigid shape between frames for the same view which is used to calcu-
late the similarity metric for the non-sequential alignment of frames and initialise
dense correspondence.
An example of sparse matching is shown in Figure 3(c). For visualization fea-
tures are color coded in one frame according to the colour map as illustrated in
Figure 3(a) and this color is propagated to feature matches at other frames.
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Fig. 4. The similarity matrix, partial 4D Match Tree and 4D alignment for Odzemok
and Juggler datasets

2.3 4D Match Trees for Non-sequential Alignment

Our aim is to estimate dense correspondence for partial non-rigid surface re-
constructions across complete sequences to obtain a temporally coherent 4D
representation. Previous research has employed a tree structure to represent non-
rigid shape of complete surfaces to achieve robust non-sequential alignment for
sequences with large non-rigid deformations [29,24,30]. Inspired by the success
of these approaches we propose the 4D Match Tree as an intermediate represen-
tation for alignment of partial non-rigid surface reconstructions. An important
difference of this approach is the use of an image-based metric to estimate the
similarity in non-rigid shape between frames. Similarity between any pair of
frames is estimated from the sparse wide-timeframe feature matching. The 4D
Match Tree represents the optimal traversal path for global alignment of all
frames as a minimum spanning tree according to the similarity metric.

The space of all possible pairwise transitions between frames of the sequence
is represented by a dissimilarity matrix D of size N × N where both rows and
columns correspond to individual frames. The elements D(i, j) = d(Fi, Fj) are
proportional to the cost of dissimilarity between frames i and j. The matrix is
symmetrical (d(Fi, Fj) = d(Fj , Fi)) and has zero diagonal (d(Fi, Fi) = 0). For
each dynamic object in a scene a graph Ω of possible frame-to-frame matches
is constructed with nodes for all frames Fi. d(Fi, Fj) is the similarity metric
between two nodes and is computed using information from sparse correspon-
dences and intersection of silhouettes obtained from the back-projection of the
surface reconstructions in each view.

Feature match metric: SFD keypoints detected for each view at each frame
are matched between frames using all views. The feature match metric for non
sequential alignment M c

i,j between frame i and j for each view c is defined as the
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inlier ratio M c
i,j =

|scFi,Fj
|

Rc
i,j

, where Rci,j is the total number of preliminary feature

matches between frames i and j for view c before constraining, and |scFi,Fj
| is

the number of matches between view c of frame i and frame j obtained using
the method explained in Section 2.2. M c

i,j is a measure of the overlap between
partial surface reconstruction for view c at frames i and j. The visible surface
overlap is a measure of their suitability for pairwise dense alignment.
Silhouette match metric: The partial surface reconstruction at each frame is
back-projected in all views to obtain silhouettes of the dynamic object. Silhou-
ettes between two frames for the same camera view c are aligned by an affine
warp [39]. The aligned silhouette intersection area hci,j between frames i and j

for view c is evaluated. A silhouette match metric Ici,j is defined as:Ici,j =
hc
i,j

Ac
i,j

,

where Aci, is the union of the area under the silhouette at frame i and j for
view c. This gives a measure of the shape similarity between observations of the
non-rigid shape between pairs of frames.
Similarity metric: The two metrics Ici,j and M c

i,j are combined to calculate
the dissimilarity between frames used as graph edge-weights. The edge-weight
d(Fi, Fj) for Ω is defined as:

d(Fi, Fj) =

{
0 , if |scFi,Fj

| < 0.006 ∗max(W,H)
1∑M

c=1M
c
i,j×Ici,j

, otherwise (1)

where W and H are the width and height of the input image. Note small val-
ues of d() indicates a high similarity in feature matches between frames. Figure
4 presents the dissimilarity matrix D between all pairs of frames for two se-
quences (red indicates similar frames, blue dissimilar). The matrix off diagonal
red areas indicate frames with similar views of the non-rigid shape suitable for
non-sequential alignment. A minimum spanning tree is constructed over this
graph to obtain the 4D Match Tree.
4D Match Tree: A fully connected graph is constructed using the dissimilarity
metric as edge-weights and the minimum spanning tree is evaluated [40,41].
Optimal paths through the sequence to every frame can be jointly optimised
based on d(). The paths are represented by a traversal tree T = (N;E) with the
nodes N = {Fi}Ni=1. The edges E are undirected and weighted by the dissimilarity
ei,j = d(Fi, Fj) for ei,j ∈ E. The optimal tree To is defined as the minimum
spanning tree (MST) which minimises the total cost of pairwise matching given
by d:

To = arg min
∀T∈Ω

 ∑
∀i,j∈T

d(Fi, Fj)

 (2)

This results in the 4D Match Tree To which minimises the total dissimilarity
between frames due to non-rigid deformation and changes in surface visibility.
Given To for a dynamic object we estimate the dense correspondence for the
entire sequence to obtain a temporally coherent 4D surface. The tree root node
Mroot is defined as the node with minimum path length to all nodes in To. The



4D Match Trees for Non-rigid Surface Alignment 9

minimum spanning tree can be efficiently evaluated using established algorithms
with order O(N logN) complexity where N is the number of nodes in the graph
Ω. The mesh at the root node is subsequently tracked to other frames by travers-
ing through the branches of the tree T towards the leaves. Examples of partial
4D Match Trees for two datasets are shown in Figure 4.

2.4 Dense non-rigid aligment

Given the 4D Match Tree global alignment is performed by traversing the tree
to estimate dense correspondence between each pair of frames connected by
an edge. Sparse SFD feature matches are used to initialise the pairwise dense
correspondence which is estimated using optical flow [42]. The sparse feature
correspondences provides a robust initialisation of the optical flow for large non-
rigid shape deformation. The estimated dense correspondence is back projected
to the 3D visible surface to establish dense 4D correspondence between frames.
In the case of multiple views dense 4D correspondence is combined across views
to obtain a consistent estimate and increase surface coverage. Dense temporal
correspondence is propagated to new surface regions as they appear using the
sparse feature matching and dense optical flow. An example of the propagated
mask with and without sparse initialization for a single view is shown in Figure
3(b). The large motion in the leg of the actor is correctly estimated with sparse
match initialization but fails without (shown by the red region indicating no
correspondence). Pairwise 4D dense surface correspondences are combined across
the tree to obtain a temporally coherent 4D alignment across all frames. An
example is shown for the Odzemok dataset in Figure 3(c) with optical flow
information for each frame. Figure 4 presents two examples of 4D aligned meshes
resulting from the global alignment with the 4D match tree.

3 Results and Performance Evaluation

The proposed approach is tested on various datasets introduced in section 2.1
and the properties of datasets are described in Table 2. Algorithm parameters
set empirically are constant for all results.

Datasets Number of views
Sequence

length
Resolution

Tree depth
(frames)

Tree depth
(%)

Dance1 8 static 200 780 × 582 65 33

Dance2 7 static, 1 moving 244 1920 × 1080 73 29

Odzemok 6 static, 2 moving 232 1920 × 1080 82 35

Cathedral 8 static 217 1920 × 1080 92 42

Magician 6 moving 400 960 × 544 127 32

Juggler 6 moving 400 960 × 544 104 26
Table 2. Properties of all datasets and their 4D Match Trees.
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Fig. 5. Comparison of sequential and non-sequential alignment of all datasets.

3.1 Sequential vs. Non-sequential alignment

4D Match Trees are constructed for all datasets using the method described in
Section 2.3. The maximum length of branches in the 4D Match Tree for global
alignment of each dataset is described in Table 2. The longest alignment path for
all sequences is < 50% of the total sequence length leading to a significant reduc-
tion in the accumulation of errors due to drift in the sequential alignment process.
Non-rigid alignment is performed over the branches of the tree to obtain tem-
porally consistent 4D representation for all datasets. Comparison of 4D aligned
surfaces obtained from the proposed non-sequential approach against sequential
tracking without the 4D Match tree is shown in Figure 5. Sequential tracking
fails to estimate the correct 4D alignment (Odzemok-64, Dance2-66, Cathedral-
55) whereas the non-sequential approach obtains consistent correspondence for
all frames for sequences with large non-rigid deformations. To illustrate the sur-
face alignment a color map is applied to the root mesh of the 4D Match tree
and propagated to all frames based on the estimated dense correspondence. The
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color map is consistently aligned across all frames for large non-rigid motions
of dynamic shapes in each dataset demonstrating qualitatively that the global
alignment achieves reliable correspondence compared to sequential tracking.

3.2 Sparse wide-timeframe correspondence

Sparse correspondences are obtained for the entire sequence using the traversal
path in the 4D Match tree from the root node towards the leaves. Results of
the sparse and dense 4D correspondence are shown in 6. Sparse matches ob-
tained using SFD are evaluated against a state-of-the-art method for sparse cor-
respondence Nebehay[43]. For fair comparison Nebehay is initialized with SFD
keypoints instead of FAST (which produces a low number of matches). Qualita-
tive results are shown in Figure 7 and quantitative results are shown in Table
3. Matches obtained using the proposed approach are approx 50% higher and
consistent across frames compared to Nebehay[43] demonstrating the robustness
of the proposed wide-timeframe matching using SFD keypoints.

Silhouette overlap error Matches

Datasets Seq Prop. Deepflow SIFT Nebehay 1 view 2 views 4 views Prop. Nebehay

Dance1 0.42 0.35 0.97 0.92 0.96 1.53 1.30 0.99 416 249

Dance2 0.83 0.63 1.36 1.43 1.38 2.13 1.78 1.47 1233 863

Odzemok 0.98 0.89 2.82 2.59 2.69 4.35 3.66 2.76 916 687

Cathedral 0.83 0.69 1.14 1.10 1.29 1.92 1.65 1.09 665 465

Magician 1.07 0.86 3.43 3.22 3.77 5.46 4.67 3.18 392 293

Juggler 0.78 0.65 1.24 1.19 1.31 2.12 1.76 1.44 547 437
Table 3. Quantitative evaluation for sparse and dense correspondence for all the
datasets; Prop. represents proposed non-sequential approach and Matches depicts the
number of sparse matches between frames averaged over the entire sequence.

3.3 Dense 4D correspondence

Dense correspondence are obtained on the 4D match tree and the color coded
results are shown in Figure 6 for all datasets. To illustrate the dense alignment
the color coding scheme shown in Figure 3 is applied to the silhouette of the dense
mesh on the root node for each view and propagated using the 4D Match Tree.
The proposed approach is qualitatively shown to propagate the correspondences
reliably over the entire sequence for complex dynamic scenes.
For comparative evaluation of dense matching we use:(a) SIFT features with
the proposed method in section 2 to obtain dense correspondence; (b) Sparse
correspondence obtained using Nebehay [43] with the proposed dense matching;
and (c) state-of-the-art dense flow algorithm Deepflow [44] over the 4D Match
Tree for each dataset. Qualitative results against SIFT and Deepflow are shown
in Figure 7. The propagated color map using deep flow and SIFT based alignment
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Fig. 6. Sparse and dense 2D tracking color coded for all datasets
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Fig. 7. Qualitative comparison: (a) Sparse tracking comparison for one indoor and one
outdoor dataset and (b) Dense tracking comparison for two indoor and one outdoor
datasets.

does not remain consistent across the sequence as compared to the proposed
method (red regions indicate correspondence failure).
For quantitative evaluation we compare the silhouette overlap error(SOE). Dense
correspondence over time is used to create propagated mask for each image.
The propagated mask is overlapped with the silhouette of the projected par-
tial surface reconstruction at each frame to evaluate the accuracy of the dense
propagation. The error is defined as:

SOE = 1
M∗N

∑N
i=1

∑M
c=1

Area of intersection
Area of back-projected mask

Evaluation against sequential and non-sequential Deepflow, SIFT and Nebehay
are shown in Table 3 for all datasets. As observed the silhouette overlap error is
lowest for the proposed SFD based non-sequential approach showing relatively
high accuracy. We also evaluate the completeness of the 3D points at each time
instant as observed in Table 4:

completeness = 100
M∗N

∑N
i=1

∑M
c=1

Number of 3D points propagated
Number of surface points visible from ‘c’ [45]

The proposed approach outperforms Deepflow, SIFT and Nebehay all of which
result in errors as observed in Figure 7 and Table 4.

Fig. 8. Single and Multi-view alignment comparison results for Odzemok dataset
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Complete
ness(%)

Deepflow SIFT Nebehay
Sequential Proposed (Non-sequential)
All views 1 view 2 views 4 views All views

Dance1 81.56 83.28 82.55 91.52 60.78 71.65 81.30 98.22

Dance2 83.26 85.80 83.96 92.76 61.98 72.30 82.87 99.36

Odzemok 81.46 79.83 80.91 90.51 62.73 70.87 77.64 98.19

Cathedral 79.54 81.53 81.78 89.21 59.77 69.05 76.98 97.40

Magician 82.58 82.92 80.65 89.58 61.29 71.23 75.56 97.53

Juggler 79.09 80.11 81.33 91.89 59.54 68.40 78.81 97.89
Table 4. Evaluation of completeness of dense 3D correspondence averaged over the
entire sequence in %.

3.4 Single vs multi-view

The proposed 4D Match Tree global alignment method can be applied to single or
multi-view image sequence with partial surface reconstruction. Dense correspon-
dence for the Odzemok dataset using different numbers of views are compared in
Figure 8. Quantitative evaluation using SOE and completeness obtained from
single, 2, 4 and all views for all datasets are presented in Table 3 and 4 respec-
tively. This shows that even with a single view the 4D Match Tree achieves 60%
completeness due to the restricted surface visibility. Completeness increases with
the number of views to > 97% for all views which is significantly higher than
other approaches.

4 Conclusions

A framework has been presented for dense 4D global alignment of partial sur-
face reconstructions of complex dynamic scenes using 4D Match trees. 4D Match
Trees represent the similarity in the observed non-rigid surface shape across the
sequence. This enables non-sequential alignment to obtain dense surface cor-
respondence across all frames. Robust wide-timeframe correspondence between
pairs of frames is estimated using a segmentation-based feature detector (SFD).
This sparse correspondence is used to estimate the similarity in non-rigid shape
and overlap between frames. Dense 4D temporal correspondence is estimated
from the 4D Match tree across all frames using guided optical flow. This is shown
to provide improved robustness to large non-rigid deformation compared to se-
quential and other state-of-the-art sparse and dense correspondence methods.
The proposed approach is evaluated on single and multi-view sequences of com-
plex dynamic scenes with large non-rigid deformations to obtain a temporally
consistent 4D representation. Results demonstrate completeness and accuracy
of the resulting global 4D alignment.
Limitations: The proposed method fails in case of objects with large deforma-
tions(high ambiguity), fast spinning (failure of optical flow), and uniform appear-
ance or highly crowded dynamic environments where no reliable sparse matches
can be obtained or surface reconstruction fails due to occlusion.
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multi-view silhouettes. ACM Trans. Graph. 27 (2008) 97:1–97:9 3

22. Tung, T., Nobuhara, S., Matsuyama, T.: Complete multi-view reconstruction of
dynamic scenes from probabilistic fusion of narrow and wide baseline stereo. In:
ICCV. (2009) 1709–1716 3



16 Armin Mustafa, Hansung Kim, Adrian Hilton

23. Cagniart, C., Boyer, E., Ilic, S.: Probabilistic deformable surface tracking from
multiple videos. In: ECCV. (2010) 326–339 3

24. Budd, C., Huang, P., Klaudiny, M., Hilton, A.: Global non-rigid alignment of
surface sequences. Int. J. Comput. Vision 102 (2013) 256–270 3, 4, 7

25. Huang, C., Cagniart, C., Boyer, E., Ilic, S.: A bayesian approach to multi-view 4d
modeling. Int. J. Comput. Vision 116 (2016) 115–135 3

26. Russell, C., Yu, R., Agapito, L.: Video pop-up: Monocular 3d reconstruction of
dynamic scenes. In: ECCV. (2014) 583–598 3

27. Guo, K., Xu, F., Wang, Y., Liu, Y., Dai, Q.: Robust non-rigid motion tracking
and surface reconstruction using l0 regularization. In: ICCV. (2015) 3

28. Bailer, C., Taetz, B., Stricker, D.: Flow fields: Dense correspondence fields for
highly accurate large displacement optical flow estimation. In: ICCV. (2015) 4

29. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression.
In: CVPR. (2012) 4, 7

30. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe,
H., Kirk, A., Sullivan, S.: High-quality streamable free-viewpoint video. ACM
Trans. Graph. (4) (2015) 69:1–69:13 4, 7

31. Ji, D., Dunn, E., Frahm, J.M.: 3d reconstruction of dynamic textures in crowd
sourced data. In: ECCV. Volume 8689. (2014) 143–158 4

32. Oswald, M., Sthmer, J., Cremers, D.: Generalized connectivity constraints for
spatio-temporal 3d reconstruction. In: ECCV 2014. (2014) 32–46 4

33. Mustafa, A., Kim, H., Imre, E., Hilton, A.: Segmentation based features for wide-
baseline multi-view reconstruction. In: 3DV. (2015) 4, 5

34. : 4d repository, http://4drepository.inrialpes.fr/. In: Institut national de recherche
en informatique et en automatique (INRIA) Rhone Alpes 5

35. : 4d and multiview video repository. In: Centre for Vision Speech and Signal
Processing, University of Surrey, UK 5

36. Ballan, L., Brostow, G.J., Puwein, J., Pollefeys, M.: Unstructured video-based
rendering: Interactive exploration of casually captured videos. ACM Trans. on
Graph. (2010) 1–11 5

37. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60
(2004) 91–110 5

38. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning
approach to corner detection. PAMI 32 (2010) 105–119 5

39. Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced
correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30
(2008) 1858–1865 8

40. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. In: Proceedings of the American Mathematical Society, 7.
(1956) 8

41. Prim, R.C.: Shortest connection networks and some generalizations. The Bell
Systems Technical Journal 36 (1957) 1389–1401 8
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