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Abstract

In this paper, we generalise multiple kernel Fisher dis-
criminant analysis (MK-FDA) such that the kernel weights
can be regularised with an `p norm for any p ≥ 1, in con-
trast to existing MK-FDA that uses either l1 or l2 norm. We
present formulations for both binary and multiclass cases
and solve the associated optimisation problems efficiently
with semi-infinite programming. We show on three object
and image categorisation benchmarks that by learning the
intrinsic sparsity of a given set of base kernels using a
validation set, the proposed `p MK-FDA outperforms its
fixed-norm counterparts, and is capable of producing state-
of-the-art performance. Moreover, we show that our `p
MK-FDA outperforms the `p multiple kernel support vector
machine (`p MK-SVM) which has been recently proposed.
Based on this observation and our experience with single
kernel FDA and SVM, we argue that the almost century-old
FDA is still a strong competitor of the popular SVM.

1. Introduction
Object and image categorisation is one of the most active

fields in computer vision. Recently, this area of research has
seen rapid progress due to advances in both feature design
[18, 20, 25] and machine learning. In the latter, continu-
ing the success of kernel methods [26, 27], multiple kernel
learning (MKL) [16] has been reported to produce state-
of-the-art performance on several benchmarks [30, 9, 32].
These MKL techniques are essentially multiple kernel sup-
port vector machines (MK-SVMs) in the sense that they
maximise the SVM [26, 27] type of objective, i.e., the mar-
gin between two classes.

In contrast to SVM, Fisher discriminant analysis (FDA)
[8] maximises the ratio of projected between and within
class scatters. Since its introduction in the 1930s, FDA
has stood the test of time. Equipped recently with kerneli-

sation [19, 2] and efficient implementation [3], FDA has
established itself as a strong competitor of SVM. In many
comparative studies, FDA is reported to offer comparable
or even better performance than SVM [19, 3, 33].

In [13, 33], a multiple kernel FDA (MK-FDA) is intro-
duced, where an `1 norm is used to regularise the kernel
weights. `1 regularisation tends to produce sparse selec-
tion results, which may lead to a loss of information. [31]
recently proposed to replace the `1 regularisation with an
`2 version. Experiments in [31] suggest that the regulari-
sation norm can have a significant impact on the classifier
performance, and one should choose `1 or `2 regularisation
based on the intrinsic sparsity of the given set of base ker-
nels. The `2 MK-FDA formulation in [31] is only for binary
problems.

In this paper, we extend [13, 33, 31] to a general `p norm
regularisation. This is achieved by approximating the `p
norm constraint in the optimisation problem using Taylor
expansion. We carry out experiments on three object and
image categorisation benchmarks and show that by select-
ing the regularisation norm p on an independent validation
set, the intrinsic sparsity of the given set of base kernels
can be learnt. As a result, using the learnt optimal norm p
in the proposed `p MK-FDA offers better performance than
`1, `2, or `∞ MK-FDAs. In particular, we show that when
applied to carefully designed kernels, such a scheme is ca-
pable of producing state-of-the-art performance. Moreover,
we show that our `p MK-FDA outperforms the `p MK-SVM
[15] which has been recently proposed.

The rest of this paper is organised as follows. In Sec-
tion 2, we introduce previous work that is related to this
paper. We then present `p MK-FDA, first for binary case
then for multiclass case, in Section 3. Experimental ev-
idence showing the advantage of `p MK-FDA over other
MKL techniques is provided in Section 4. Finally conclu-
sions are given in Section 5.



2. Related Work: Multiple Kernel Learning
Let us for now consider a binary classification problem.

Suppose one is given n m × m training kernel matrices
Kj , j = 1, · · · , n and m class labels yi ∈ {1,−1}, i =
1, · · · ,m, where m is the number of training samples.
The original formulation of MKL [16] considers a lin-
ear convex combination of these n base kernels: K =∑n
j=1 βjKj , βj ≥ 0, ||β||1 = 1. Geometrically, tak-

ing the sum of two kernel matrices can be interpreted as
taking the Cartesian product of the two associated feature
spaces. The goal of MKL is then to learn the “optimal” scal-
ing of the feature spaces, such that the “separation” of the
two classes in the augmented feature space is maximised.

[16] proposes to use the margin as a measure of separa-
tion and formulates the resulting `1 MK-SVM optimisation
problem as a semi-definite program (SDP). The efficiency
of `1 MK-SVM was improved significantly in later works
[1, 28, 23]. `1 regularisation is known to produce sparse
solutions [24], which may not always be desirable since the
information carried in the zero-weighted kernels is lost. To
overcome this problem, non-sparse MK-SVMs based on `2
regularisation and the general case of `p (p ≥ 1) regulari-
sation have been proposed in [14, 15]. Other works on the
regularisation norm in MK-SVM include composite kernel
learning [29] and mixed norm kernel learning [21].

In parallel to MK-SVMs, another line of research fo-
cuses on multiple kernel learning for Fisher discriminant
analysis [13, 33, 31]. In MK-FDA, the FDA type of class
separation criterion, i.e., the ratio of the projected between
and within class scatters, is considered instead of the mar-
gin criterion in SVM. The `1 MK-FDA in [33] is derived
for both binary and multiclass cases. However, similar to
`1 MK-SVM, it suffers from the “over-selectiveness” prob-
lem. This is overcome by its `2 counterpart in [31], but the
formulation in [31] is for binary problems only. It is thus
the goal of this paper to extend existing MK-FDA methods
to a general `p regularisation for both binary and multiclass
problems.

3. `p Norm Multiple Kernel FDA
In this section we first present our `p MK-FDA for binary

problems and then for multiclass problems. In both cases,
we first give problem formulation, then solve the associated
optimisation problem using semi-infinite programming.

3.1. Binary Case

Problem formulation Our goal is to learn optimal kernel
weights β ∈ Rn for the linear combination of n kernels
under the `p constraint: K =

∑n
j=1 βjKj , βj ≥ 0, ||β||pp ≤

1 for any p ≥ 1, such that the ratio criterion of FDA is
maximised. The p ≥ 1 requirement is to ensure that the
triangle inequality is satisfied and that || · ||p defines a norm.

Let m+ be the number of positive training samples, and
m− = m − m+ the number of negative training samples.
For a given kernel K, we assume it has been centred in its
feature space [26]. Let µ+ and µ− be the centroids of the
positive and negative samples in the feature space, respec-
tively, and C+ and C− be the covariance matrices of the
two classes, respectively. The between class scatter SB and
within class scatter Sw are defined as:

SB = m+m−

m (µ+ − µ−)(µ+ − µ−)T (1)
SW = m+C+ +m−C− (2)

The objective of single kernel FDA is to find the projection
direction w in the feature space that maximises wTSBw

wTSW w
, or

equivalently,
wT m

m+m−
SBw

wTST w
, where ST = SB + SW is the

total scatter matrix. In practice a regularised version,

J1(w) =
wT m

m+m−SBw
wT (ST + λI)w

(3)

is maximised to improve generalisation and numerical sta-
bility [19], where λ is a small positive number.

Exploring the link between FDA and regularised least
squares (RLS) and using the duality theory of optimisation,
it is proved in [33] that the maximal value of (3) is given by
(up to an additive constant determined by the labels):

J∗1 ∼ min
α

(
1
4
αT (I +

1
λ
K)α−αTa) (4)

where α ∈ Rm and a = ( 1
m+ , · · · , 1

m+ ,
−1
m− , · · · ,

−1
m− )T ∈

Rm contains the centred labels. Now consider the case
where the kernelK can be chosen from linear combinations
of a set of base kernels. The kernel weights must be regu-
larised somehow to make sure (4) remains meaningful and
does not become arbitrarily large. In this paper, we propose
to impose an `p regularisation on the kernel weights for any
p ≥ 1: K = {K =

∑n
j=1 βjKj : β ≥ 0, ||β||pp ≤ 1}. It

directly follows that the optimal K maximising (4) is found
by solving:

max
β

min
α
S(α,β) s.t. β ≥ 0, ||β||pp ≤ 1 (5)

where

S(α,β) =
1
4λ

αT
n∑
j=1

βjKjα +
1
4
αTα−αTa (6)

Note that putting an `p constraint on β or penalizing w by
an `q norm are equivalents with p = q/(2 − q) [15, 29].
When p = 1 we have the `1 MK-FDA; while p = ∞ leads
to q = 2, and MK-FDA reduces to the regular kernel FDA
with concatenation of feature spaces. In this paper, how-
ever, we are interested in the general case of any p ≥ 1.



(5) is an optimisation problem with a quadratic objective
and a general pth order constraint. We exploit the idea from
`p MK-SVM [15] and use second order Taylor expansion to
approximate the norm constraint:

||β||pp ≈ p(p− 1)
2

n∑
j=1

β̃p−2
j β2

j −
n∑
j=1

p(p− 2)β̃p−1
j βj

+
p(p− 3)

2
+ 1 := ν(β) (7)

where β̃j is the current estimate of βj in an iterative process,
which will be explained in more detail in the next section.
Substituting (7) into (5) we arrive at the binary `p MK-FDA
optimisation problem:

max
β

min
α
S(α,β) s.t. β ≥ 0, ν(β) ≤ 1 (8)

Solving the optimisation problem with SIP A semi-
infinite program (SIP) is an optimisation problem with fi-
nite number of variables x ∈ Rd on a feasible set described
by infinitely many constraints [12]. Following the same ar-
guments as in [28, 33], it is straightforward to show that (8)
is equivalent to a SIP:

maxθ,β θ (9)
s.t. β ≥ 0, ν(β) ≤ 1, S(α,β) ≥ θ ∀α ∈ Rm

We adapt the wrapper algorithm proposed in [28] to
solve (9). This algorithm is based on a technique called
column generation, where the basic idea is to divide a SIP
into an inner sub-problem and an outer sub-problem. The
algorithm alternates between solving the two sub-problems
until convergence. At step t, assuming the current optimal
(θ(t),β(t)) have been obtained in the outer sub-problem, the
inner sub-problem identifies the constraint that maximises
the constraint violation for (θ(t),β(t)):

α(t) := arg min
α
S(α,β(t)) (10)

Observing that (10) is an unconstrained quadratic program,
α(t) is obtained by solving the following linear system [33]:

(
1
2
I +

1
2λ

n∑
j=1

β
(t)
j Kj)α(t) = a (11)

If α(t) satisfies constraint S(α(t),β(t)) ≥ θ(t) then solution
(θ(t),β(t)) is optimal. Otherwise, the constraint is added to
the set of constraints and the algorithm proceeds to the outer
sub-problem of step t+ 1.

The outer sub-problem is also called the restricted master
problem. At step t, it computes the optimal (θ(t+1),β(t+1))
in (9) for a restricted subset of constraints:

(θ(t+1),β(t+1)) = arg maxθ,β θ (12)
s.t. β ≥ 0, ν(β) ≤ 1, S(α(r),β) ≥ θ ∀r = 1, · · · , t

Table 1. An iterative algorithm for solving the SIP problem (9)

• Initialisation: S(0) = 1, θ(1) = −∞, β(1)
j = n−1/p

for j = 1, · · · , n
• for t = 1, 2, · · · do

– Compute α(t) = arg minα S(α,β(t)) using
(11)

– Compute S(t) := S(α(t),β(t))

– if |1− S(t)

θ(t) | ≤ ε break

– Compute (θ(t+1),β(t+1)) = arg maxθ,β θ in
(12), where ν(β) is defined as in (7) with β̃ =
β(t).

• end for

When p = 1, ν(β) ≤ 1 reduces to a linear constraint. As a
result, (12) becomes a linear program (LP) and `p MK-FDA
reduces to the `1 MK-FDA in [33]. When p > 1, (12) is a
quadratically constrained linear program (QCLP) with one
quadratic constraint ν(β) ≤ 1 and t + n linear constraints.
This can be solved by off-the-shelf optimisation tools such
as Mosek 1. Note that at time t + 1, ν(β) is defined as in
(7) with β̃ = β(t), i.e., the current estimate of β.

Normalised maximal constraint violation is used as a
convergence criterion. The algorithm stops when |1 −
S(t)

θ(t) | ≤ ε, where S(t) := S(α(t),β(t)) and ε is a pre-
defined accuracy parameter. This iterative algorithm for
solving the `p binary MK-FDA SIP problem is summarised
in Table 1. It is a special case of a set of SIP algorithms
known as exchange methods, which are guaranteed to con-
verge [12].

3.2. Multiclass Case

In this section we consider the multiclass case. Let c be
the number of classes, and mk be the number of training
samples in the kth class. In multiclass FDA, the following
objective is commonly maximised [33]:

J2(W ) = trace(
WTSBW

WT (ST + λI)W
) (13)

where W is the projection matrix, and ST = SB + SW .
More specifically, SW is defined in a similar way as in (2)
but with c classes, and SB = φ(X)HHTφ(X)T , where
φ(X) = (φ(x1), φ(x2), · · · , φ(xm)) is the set ofm training
samples in the feature space, and H = (h1,h2, · · · ,hc) is
an m× c matrix with hk defined as:

hk(i) =

{ √
m
mk
−

√
mk

m if yi = k

−
√

mk

m if yi 6= k

1http://www.mosek.com



Similar to the binary case, using duality theory and the
connection between FDA and RLS, [33] shows that the
maximal value of (13) is given by (up to an additive con-
stant determined by the labels):

J∗2 ∼ min
α1,··· ,αc

c∑
k=1

(
1
4
αT
k (I +

1
λ
K)αk −αT

k hk) (14)

where αk ∈ Rm for k = 1, · · · , c. When choosing from
linear combinations of a set of base kernels with kernel
weights regularised with an `p norm, we use again second
order Taylor expansion (7) to approximate the norm con-
straint and arrive at the multiclass `p MK-FDA optimisation
problem:

max
β

min
α1,··· ,αc

S(α1, · · · ,αc,β) s.t. β ≥ 0, ν(β) ≤ 1 (15)

where ν(β) is defined as in (7) and

S(α1, · · · ,αc,β) (16)

=
c∑

k=1

(
1
4λ

αT
k

n∑
j=1

βjKjαk +
1
4
αT
kαk −αT

k hk)

Again similar to the binary case, (15) can be formulated
as a SIP:

maxθ,β θ (17)
s.t. β ≥ 0, ν(β) ≤ 1, S(α1, · · · ,αc,β) ≥ θ

∀αk ∈ Rm, k = 1, · · · , c

and the SIP (17) can be solved with the same column gen-
eration algorithm in Table 1. In the inner sub-problem,
the only difference is that here c linear systems need to be
solved, one for each hk:

(
1
2
I +

1
2λ

n∑
j=1

β
(t)
j Kj)α

(t)
k = hk (18)

When p = 1, the outer sub-problem reduces to an LP
and our formulation reduces to that in [33]. For p > 1, the
outer sub-problem is a QCLP with one quadratic constraint
and t + n linear constraints, as in the binary case. This is
easily seen by rearranging (16):

S(α1, · · · ,αc,β) (19)

=
n∑
j=1

βj(
c∑

k=1

1
4λ

αT
kKjαk) +

c∑
k=1

(
1
4
αT
kαk −αT

k hk)

4. Experiments
In this section we first show experimental results of the

binary formulation on PASCAL VOC2007 [6], and then the
results of the multiclass formulation on Caltech101 [7] and
Oxford Flower17 [22]. For both formulations, kernels are
centred in its feature space, and normalised to have a unit
trace.

Figure 1. VOC2007: kernel weights learnt on the training set in `p
MK-FDA with various p values. “cat” class.

4.1. Pascal VOC2007

Pascal VOC2007 is a multilabel dataset consisting of 20
object categories. It is divided into training, validation and
test sets, with 2501, 2510 and 4952 images respectively. To
tackle this multilabel problem, the classification of the 20
object classes is treated as 20 independent binary problems,
and average precision (AP) is used to measure the perfor-
mance of each binary classifier.

We generate 14 base kernels by combining 7 colour vari-
ants of local descriptors in [25] and two distance functions,
namely, spatial pyramid match kernel (SPMK) [17, 11] and
radial basis function (RBF) kernel with χ2 distance [34].
We first perform supervised dimensionality reduction to im-
prove its discriminability following [4]. The descriptors
with reduced dimensionality are clustered with k-means to
learn codewords [5]. The soft assignment scheme in [10]
is then exploited to generate a histogram for each image as
its representation. Finally, the two distance functions are
applied to the histograms to build kernels.

We study the effect of the regularisation norm, and com-
pare the performance of `p MK-SVM [15] and the proposed
`p MK-LDA. We used the `p MK-SVM implementation in
the Shogun machine learning toolbox [28]. For `p MK-
FDA, we implemented it in Matlab, and the associated op-
timisation problem was solved using the Mosek software.
For both methods, we learn the parameter p on the valida-
tion set from 12 values: {1, 1 + 2−6, 1 + 2−5, 1 + 2−4, 1 +
2−3, 1 + 2−2, 1 + 2−1, 2, 3, 4, 8, 106}. In `p MK-SVM,
the trade-off parameter C is learnt jointly with p from 10
values: {0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128}. Similarly, in
`p MK-FDA, the parameter λ, which essentially serves the
same function as C, is learnt jointly with p from 10 values
that are logarithmically evenly spaced over 10−8 to 10+1.

Plotted in Fig. 1 are the weights learnt on the training
set in `p MK-FDA with various p values for the “cat” class,
where for each p value, the weights learnt with the opti-



Figure 2. VOC2007: learning the norm p on a validation set. Left
column: “dinningtable” class. Right column: “cat” class. Top
row: APs on the validation set and test set with various p val-
ues; middle row: kernel weights on the training set with the opti-
mal {p, λ} combination; bottom row: kernel weights on the train-
ing+validation set with the same {p, λ} combination.

mal λ value are plotted. It is clear that as p increases, the
sparsity of the learnt weights decreases. As expected, when
p = 106 (practically infinity), the kernels weights become
ones, i.e., `p MK-FDA becomes `∞ MK-FDA. Note also
that p = 1 and p = 2 are equivalent to `1 and `2 MK-FDAs
respectively.

Next, we plot in Fig. 2 top-left the APs on the validation
set and test set for the “dinningtable” class with various p
values, where again for each p value, the APs with the λ
value that gives the best AP on the validation set are plotted.
It is clear that the two curves match well, which implies
that learning p in addition to λ should help. Shown in the
middle and bottom rows of the same column are the learnt
kernel weights with the optimal {p, λ} combination on the
training set and on the training + validation set, respectively.
Since for the “dinningtable” class the optimal p found on
the validation set is 1+2−5, both sets of weights are sparse.
This means for this particular class, the intrinsic sparsity of
the set of base kernels is high.

Similarly, the right column of Fig. 2 shows the results
for the “cat” class. We observe again that the AP on the
validation set and that on the test set show similar patterns.
However, for the “cat” class, the optimal p on the validation
set is found to be 1 + 2−3, which implies that the intrinsic
sparsity of the kernels is lower.

When keeping the norm p fixed at 1, 2, 106 and learn-
ing only the C/λ parameter, the `p MK-SVM/MK-FDA re-
duces to `1, `2 and `∞ MK-SVM/MK-FDA, respectively.

Table 2. VOC2007: Average precisions of 8 MKL methods

MK-SVM MK-FDA

`1 `2 `∞ `p `1 `2 `∞ `p

aeroplane 78.8 79.7 79.6 79.6 80.4 80.1 79.5 80.4
bicycle 63.4 64.7 65.0 64.7 69.9 68.5 67.6 69.9

bird 57.3 60.6 61.0 61.0 61.6 63.6 61.9 64.8
boat 71.1 70.2 70.1 71.1 72.4 71.2 70.0 72.4

bottle 29.1 29.7 29.9 29.7 29.1 30.4 29.7 29.9

bus 62.9 64.2 64.9 65.5 66.2 67.5 66.1 66.7

car 77.9 78.6 78.8 78.8 81.4 80.8 79.5 81.9
cat 56.7 56.4 56.4 57.1 57.8 57.8 56.9 58.8

chair 52.3 52.8 53.0 53.0 53.5 53.3 52.5 53.5
cow 38.7 40.3 41.4 41.4 46.4 43.6 41.5 46.4

din. table 52.4 56.1 57.3 56.6 62.5 61.2 59.2 62.8
dog 42.8 43.9 45.8 44.6 46.0 46.0 46.1 45.9

horse 78.9 80.2 80.6 80.6 81.0 81.6 81.1 82.2
moterbike 66.3 66.6 66.8 66.8 67.7 68.6 67.7 69.5

person 86.7 87.8 88.0 88.0 89.1 88.8 88.1 89.3
pot. plant 31.8 39.7 41.0 40.5 41.2 43.1 42.6 39.5

sheep 40.2 44.8 46.0 46.0 47.0 46.4 44.4 49.5
sofa 44.0 43.2 43.8 44.0 43.9 45.4 43.7 46.8
train 81.3 82.2 82.4 82.4 85.2 85.0 84.2 85.1

tvmonitor 53.3 53.2 53.7 53.7 55.2 55.8 54.1 56.6

MAP 58.3 59.8 60.3 60.3 61.9 61.9 60.8 62.6

The APs and mean APs (MAPs) of the 8 MKL methods are
shown in Table 2. The results in Table 2 demonstrate that
learning p indeed improves the performance of MK-FDA.
It is also worth noting that the performance of `p MK-FDA
is comparable to that in [32], which is the best reported on
this benchmark to the best of our knowledge. Another in-
teresting observation is that for any norm MK-FDA consis-
tently outperforms MK-SVM, which is widely considered
the state-of-the-art classification method.

The algorithm described in Table 1 for solving the SIP in
`p MK-FDA is known to be efficient [28, 33]. In our exper-
iments, we observe that the speed of our implementation of
`p MK-FDA is comparable to that of the `p MK-SVM in the
Shogun toolbox. For each binary problem in the VOC2007
dataset, both methods take approximately 500 seconds to
learn the weights of the 14 kernels on a single core of an
AMD Opteron Processor. For both methods, the stopping
threshold is set to 10−4.

4.2. Caltech101

Caltech101 is a multiclass object recognition benchmark
with 101 object categories. For multiclass problems, only
the `1 and `∞ MK-SVMs have been implemented in the
Shogun toolbox. As a result, we only compare our multi-
class `p MK-FDA with `1, `2, `∞ MK-FDAs and `1, `∞
MK-SVMs. We follow the popular practice of using 15
randomly selected images per class for training, up to 50
randomly selected images per class for testing, and com-
puting the average accuracy over all classes. This process



Figure 3. Caltech101: Accuracy of `1, `2, `∞, `p MK-FDAs and
`1, `∞ MK-SVMs with various noise levels.

is repeated 3 times, and we report the mean of the average
accuracies. In order to learn the parameters (p and λ for `p
MK-FDA, λ for `1, `2, `∞ MK-FDAs, and C for `1, `∞
MK-SVMs), in each of the 3 runs, we randomly split the
15 training images from each class into a training set of 10
images and a validation set of 5 images. This process is re-
peated 3 times, and the mean of the average accuracies on
the validation set is used for choosing the parameters.

We generate kernels in a similar way as in the VOC2007
experiments. In addition to these “informative” kernels, we
also construct 10 RBF kernels from 10 sets of random vec-
tors. To test the robustness of the `p MK-FDA, we repeat
experiments 6 times. We start with only the informative ker-
nels, and add two more random kernels in each subsequent
run. p, λ and C are learnt from the same sets of values as in
the VOC2007 experiments.

The performance of the four MK-FDAs and the two MK-
SVMs with various numbers of random kernels is shown in
Fig. 3. As expected, `1 MK-FDA and `1 MK-SVM are very
robust to noise, while the performance of `2 MK-FDA, `∞
MK-FDA and `∞MK-SVM drops significantly as the noise
level increases. On the other hand, by tuning the regulari-
sation norm p the intrinsic sparsity of a kernel set can be
learnt. As a result, `p MK-FDA outperforms all the fixed-
norm MKL methods regardless of the level of noise in the
kernel set.

We can also observe that both `1 MK-FDA and `∞ MK-
FDA outperform their MK-SVM counterparts. This is con-
sistent with the VOC07 results. We believe this observa-
tion is important given that SVM and SVM based MKL
are widely accepted as the state-of-the-art classifier in al-
most all object categorisation systems, and it highlights the
significance of our contribution with the proposed `p MK-
FDA.

Table 3. Flower17: Comparison of 8 MKL methods

method accuracy parameters

product 85.5± 1.2 C

averaging 84.9± 1.9 C

MKL (SILP) 85.2± 1.5 C

MKL (Simple) 85.2± 1.5 C

CG-Boost 84.8± 2.2 C

LP-β 85.5± 3.0 Cj , j = 1, · · · , n and δ ∈ (0, 1)

LP-B 85.4± 2.4 Cj , j = 1, · · · , n and δ ∈ (0, 1)

`p MK-FDA 86.7 ± 1.2 p and λ jointly

4.3. Oxford Flower17

Oxford Flower17 dataset consists of flower images from
17 categories of flowers with 80 images per category. This
dataset comes with three predefined splits into train (17×40
images), validation (17× 20 images) and test (17× 20 im-
ages) sets. Moreover the authors of [22] precomputed 7
distance matrices using various features, and put the matri-
ces online 2. We downloaded these distance matrices and
followed the same procedure as in [9] to compute 7 kernel
matrices: K(xi,xj) = exp(−D(xi,xj)/γ), where γ is the
mean of the pairwise distances.

Table 3 compares the `p MK-FDA proposed in this pa-
per and 7 kernel combination techniques discussed in [9].
Note that these methods are directly comparable since they
share the same kernel matrices and the same splits. In Table
3, the performance of `p MK-FDA is achieved by learning
p and λ from the same sets of values as in the VOC2007
and Caltech101 experiments. For the other 7 methods, the
corresponding entries are taken directly from [9].

In Table 3, “product” and “sum” refer to the two simplest
kernel combination methods, namely, taking the element-
wise geometric mean and arithmetic mean of the kernels, re-
spectively; “MKL (SILP)” and “MKL (Simple)” are essen-
tially `1 MK-SVM; while “CG-Boost”, “LP-β” and “LP-B”
are three boosting based kernel combination methods. We
can see that these boosting based methods, although per-
forming well on other datasets according to [9], fail to out-
perform the baseline methods “product” and “averaging”.
The `p MK-FDA on the other hand shows a relatively sig-
nificant improvement over all the methods discussed in [9].
The optimal p value is found to be 1.5. The number of pa-
rameters that need to be learnt in these methods is also com-
pared in Table 3.

5. Conclusions
In this paper, we have generalised MK-FDA such that

the kernel weights can be regularised with an `p norm for
any p ≥ 1. We have presented formulations for both binary
and multiclass cases and solved the associated optimisation

2http://www.robots.ox.ac.uk/ vgg/research/flowers/index.html



problems efficiently with semi-infinite programming. We
have demonstrated on three object and image categorisation
benchmarks that by learning the intrinsic sparsity of a given
set of base kernels using a validation set, the proposed `p
MK-FDA outperforms its fixed-norm counterparts, and is
capable of producing state-of-the-art performance. More-
over, we have shown that our `p MK-FDA outperforms the
`p MK-SVM from [15]. Based on this observation and our
experiments with single kernel FDA and SVM, we argue
that the almost century-old FDA is still a strong competitor
of the popular SVM. Code for the proposed `p MK-FDA
and kernels for the datasets used in this paper are available
online at http://www.featurespace.org.
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