
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 1

Tracking-Learning-Detection
Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas,

Abstract—This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and
extent in a single frame. In every frame that follows, the task is to determine the object’s location and extent or indicate that the object is
not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning
and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so
far and corrects the tracker if necessary. The learning estimates detector’s errors and updates it to avoid these errors in the future. We
study how to identify detector’s errors and learn from them. We develop a novel learning method (P-N learning) which estimates the
errors by a pair of “experts”: (i) P-expert estimates missed detections, and (ii) N-expert estimates false alarms. The learning process is
modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe
our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which
shows a significant improvement over state-of-the-art approaches.

Index Terms—Long-term tracking, learning from video, bootstrapping, real-time, semi-supervised learning

F

1 INTRODUCTION
Consider a video stream taken by a hand-held camera depict-
ing various objects moving in and out of the camera’s field of
view. Given a bounding box defining the object of interest
in a single frame, our goal is to automatically determine
the object’s bounding box or indicate that the object is not
visible in every frame that follows. The video stream is to be
processed at frame-rate and the process should run indefinitely
long. We refer to this task as long-term tracking.

To enable the long-term tracking, there are a number of
problems which need to be addressed. The key problem is
the detection of the object when it reappears in the camera’s
field of view. This problem is aggravated by the fact that the
object may change its appearance thus making the appearance
from the initial frame irrelevant. Next, a successful long-
term tracker should handle scale and illumination changes,
background clutter, partial occlusions and operate in real-time.

The long-term tracking can be approached either from
tracking or from detection perspectives. Tracking algorithms
estimate the object motion. Trackers require only initialization,
are fast and produce smooth trajectories. On the other hand,
they accumulate error during run-time (drift) and typically
fail if the object disappears from the camera view. Research
in tracking aims at developing increasingly robust trackers
that track “longer”. The post-failure behavior is not directly
addressed. Detection-based algorithms estimate the object lo-
cation in every frame independently. Detectors do not drift
and do not fail if the object disappears from the camera view.
However, they require an offline training stage and therefore
cannot be applied to unknown objects.

• Z. Kalal and K. Mikolajczyk are with the Centre for Vision, Speech and
Signal Processing, University of Surrey, Guildford, UK.
WWW: http://info.ee.surrey.ac.uk/Personal/Z.Kalal/

• J. Matas is with the Center for Machine Perception, Department of
Cybernetics, Faculty of Electrical Engineering, Czech Technical University
in Prague, Czech Republic.

The starting point of our research is the acceptance of the
fact that neither tracking nor detection can solve the long-
term tracking task independently. However, if they operate
simultaneously, there is potential to benefit one from another.
A tracker can provide weakly labeled training data for a
detector and thus improve it during run-time. A detector can
re-initialize a tracker and thus minimize the tracking failures.

The first contribution of this paper is the design of a novel
framework (TLD) that decomposes the long-term tracking task
into three sub-tasks: tracking, learning and detection. Each
sub-task is addressed by a single component and the compo-
nents operate simultaneously. The tracker follows the object
from frame to frame. The detector localizes all appearances
that have been observed so far and corrects the tracker if
necessary. The learning estimates detector’s errors and updates
it to avoid these errors in the future.

While a wide range of trackers and detectors exist, we are
not aware of any learning method that would be suitable for the
TLD framework. Such a learning method should: (i) deal with
arbitrarily complex video streams where the tracking failures
are frequent, (ii) never degrade the detector if the video does
not contain relevant information and (iii) operate in real-time.

To tackle all these challenges, we rely on the various
information sources contained in the video. Consider, for
instance, a single patch denoting the object location in a single
frame. This patch defines not only the appearance of the object,
but also determines the surrounding patches, which define the
appearance of the background. When tracking the patch, one
can discover different appearances of the same object as well
as more appearances of the background. This is in contrast to
standard machine learning approaches, where a single example
is considered independent from other examples [1]. This opens
interesting questions how to effectively exploit the information
in the video during learning.

The second contribution of the paper is the new learning
paradigm called P-N learning. The detector is evaluated in
every frame of the video. Its responses are analyzed by two

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 2

Fig. 1. Given a single bounding box defining the object location and extent in the initial frame (LEFT), our system
tracks, learns and detects the object in real-time. The red dot indicates that the object is not visible.

types of ”experts”: (i) P-expert – recognizes missed detections,
and (ii) N-expert – recognizes false alarms. The estimated
errors augment a training set of the detector, and the detector
is retrained to avoid these errors in the future. As any other
process, also the P-N experts are making errors them self.
However, if the probability of expert’s error is within certain
limits (which will be analytically quantified), the errors are
mutually compensated which leads to stable learning.

The third contribution is the implementation. We show how
to build a real-time long-term tracking system based on the
TLD framework and the P-N learning. The system tracks,
learns and detects an object in a video stream in real-time.

The fourth contribution is the extensive evaluation of the
state-of-the-art methods on benchmark data sets, where our
method achieved saturated performance. Therefore, we have
collected and annotated new, more challenging data sets, where
a significant improvement over state-of-the-art was achieved.

The rest of the paper is organized as follows. Section 2
reviews the work related to the long-term tracking. Section 3
introduces the TLD framework and section 4 proposes the P-N
learning. Section 5 comments on the implementation of TLD.
Section 6 then performs a number of comparative experiments.
The paper finishes with contributions and suggestions for
future research.

2 RELATED WORK

This section reviews the related approaches for each of the
component of our system. Section 2.1 reviews the object
tracking with the focus on robust trackers that perform online
learning. Section 2.2 discusses the object detection. Finally,
section 2.3 reviews relevant machine learning approaches for
training of object detectors.

2.1 Object tracking

Object tracking is the task of estimation of the object motion.
Trackers typically assume that the object is visible through-
out the sequence. Various representations of the object are
used in practice, for example: points [2], [3], [4], articulated
models [5], [6], [7], contours [8], [9], [10], [11], or optical
flow [12], [13], [14]. Here we focus on the methods that
represent the objects by geometric shapes and their motion is
estimated between consecutive frames, i.e. the so-called frame-
to-frame tracking. Template tracking is the most straightfor-
ward approach in that case. The object is described by a target
template (an image patch, a color histogram) and the motion is

defined as a transformation that minimizes mismatch between
the target template and the candidate patch. Template tracking
can be either realized as static [15] (when the target template
does not change), or adaptive [2], [3] (when the target template
is extracted from the previous frame). Methods that combine
static and adaptive template tracking have been proposed [16],
[17], [18], as well as methods that recognize ”reliable” parts
of the template [19], [20]. Templates have limited modeling
capabilities as they represent only a single appearance of the
object. To model more appearance variations, the generative
models have been proposed. The generative models are either
build offline [21], or during run-time [22], [23]. The generative
trackers model only the appearance of the object and as such
often fail in cluttered background. In order to alleviate this
problem, recent trackers also model the environment where the
object moves. Two approaches to environment modeling are
often used. First, the environment is searched for supporting
object the motion of which is correlated with the object of in-
terest [24], [25]. These supporting object then help in tracking
when the object of interest disappears from the camera view or
undergoes a difficult transformation. Second, the environment
is considered as a negative class against which the tracker
should discriminate. A common approach of discriminative
trackers is to build a binary classifier that represents the deci-
sion boundary between the object and its background. Static
discriminative trackers [26] train an object classifier before
tracking which limits their applications to known objects.
Adaptive discriminative trackers [27], [28], [29], [30] build
a classifier during tracking. The essential phase of adaptive
discriminative trackers is the update: the close neighborhood
of the current location is used to sample positive training
examples, distant surrounding of the current location is used
to sample negative examples, and these are used to update
the classifier in every frame. It has been demonstrated that
this updating strategy handles significant appearance changes,
short-term occlusions, and cluttered background. However,
these methods also suffer from drift and fail if the object leaves
the scene for longer than expected. To address these problems
the update of the tracking classifier has been constrained by an
auxiliary classifier trained in the first frame [31] or by training
a pair of independent classifiers [32], [33].

2.2 Object detection
Object detection is the task of localization of objects in an
input image. The definition of an ”object” vary. It can be a
single instance or a whole class of objects. Object detection

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 3

methods are typically based on the local image features [34]
or a sliding window [35]. The feature-based approaches usu-
ally follow the pipeline of: (i) feature detection, (ii) feature
recognition, and (iii) model fitting. Planarity [34], [36] or a
full 3D model [37] is typically exploited. These algorithms
reached a level of maturity and operate in real-time even on
low power devices [38] and in addition enable detection of a
large number of objects [39], [40]. The main strength as well
as the limitation is the detection of image features and the
requirement to know the geometry of the object in advance.
The sliding window-based approaches [35], scan the input
image by a window of various sizes and for each window
decide whether the underlying patch contains the object of
interest or not. For a QVGA frame, there are roughly 50,000
patches that are evaluated in every frame. To achieve a real-
time performance, sliding window-based detectors adopted the
so-called cascaded architecture [35]. Exploiting the fact that
background is far more frequent than the object, a classifier is
separated into a number of stages, each of which enables early
rejection of background patches thus reducing the number
of stages that have to be evaluated on average. Training of
such detectors typically requires a large number of training
examples and intensive computation in the training stage to
accurately represent the decision boundary between the object
and background. An alternative approach is to model the object
as a collection of templates. In that case the learning involves
just adding one more template [41].

2.3 Machine learning

Object detectors are traditionally trained assuming that all
training examples are labeled. Such an assumption is too
strong in our case since we wish to train a detector from
a single labeled example and a video stream. This problem
can be formulated as a semi-supervised learning [42], [43]
that exploits both labeled and unlabeled data. These methods
typically assume independent and identically distributed data
with certain properties, such as that the unlabeled examples
form “natural” clusters in the feature space. A number of
algorithms relying on similar assumptions have been proposed
in the past including EM, Self-learning and Co-training.

Expectation-Maximization (EM) is a generic method for
finding estimates of model parameters given unlabeled data.
EM is an iterative process, which in case of binary classifica-
tion alternates over estimation of soft-labels of unlabeled data
and training a classifier. EM was successfully applied to docu-
ment classification [44] and learning of object categories [45].
In the semi-supervised learning terminology, EM algorithm
relies on the ”low density separation” assumption [42], which
means that the classes are well separated. EM is sometimes
interpreted as a “soft” version of self-learning [43].

Self-learning starts by training an initial classifier from a
labeled training set, the classifier is then evaluated on the
unlabeled data. The examples with the most confident classifier
responses are added to the training set and the classifier is
retrained. This is an iterative process. The self-learning has
been applied to human eye detection in [46]. However, it was
observed that the detector improved more if the unlabeled

Fig. 2. The block diagram of the TLD framework.

data was selected by an independent measure rather than the
classifier confidence. It was suggested that the low density
separation assumption is not satisfied for object detection and
other approaches may work better.

Co-training [1] is a learning method build on the idea that
independent classifiers can mutually train one another. To
create such independent classifiers, co-training assumes that
two independent feature-spaces are available. The learning
is initialized by training of two separate classifiers using
the labeled examples. Both classifiers are then evaluated on
unlabeled data. The confidently labeled samples from the
first classifier are used to augment the training set of the
second classifier and vice versa in an iterative process. Co-
training works best for problems with independent modalities,
e.g. text classification [1] (text and hyper-links) or biometric
recognition systems [47] (appearance and voice). In visual
object detection, co-training has been applied to car detection
in surveillance [48] and moving object recognition [49]. We
argue that co-training is suboptimal for object detection, since
the examples (image patches) are sampled from a single
modality. Features extracted from a single modality may be
dependent and therefore violate the assumptions of co-training.

2.4 Most related approaches
Many approaches combine tracking, learning and detection
in some sense. In [50], an offline trained detector is used to
validate the trajectory output by a tracker and if the trajectory
is not validated, an exhaustive image search is performed to
find the target. Other approaches integrate the detector within
a particle filtering [51] framework. Such techniques have been
applied to tracking of faces in low frame-rate video [52],
multiple hockey players [53], or pedestrians [54], [55]. In
contrast to our method, these methods rely on an offline trained
detector that does not change its properties during run-time.
Adaptive discriminative trackers [29], [30], [31], [32], [33]
also have the capability to track, learn and detect. These
methods realize tracking by an online learned detector that
discriminates the target from its background. In other words,
a single process represents both tracking and detection. This
is in contrast to our approach where tracking and detection
are independent processes that exchange information using
learning. By keeping the tracking and detection separated our
approach does not have to compromise neither on tracking nor
detection capabilities of its components.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 4

Training

P-N
experts

Classifier

unlabeled data

Training
Set

labeled data

labels

classifier
parameters

[+] examples

[-] examples

Fig. 3. The block diagram of the P-N learning.

3 TRACKING-LEARNING-DETECTION
TLD is a framework designed for long-term tracking of an
unknown object in a video stream. Its block diagram is
shown in figure 2. The components of the framework are
characterized as follows: Tracker estimates the object’s motion
between consecutive frames under the assumption that the
frame-to-frame motion is limited and the object is visible.
The tracker is likely to fail and never recover if the object
moves out of the camera view. Detector treats every frame
as independent and performs full scanning of the image to
localize all appearances that have been observed and learned
in the past. As any other detector, the detector makes two
types of errors: false positives and false negative. Learning
observes performance of both, tracker and detector, estimates
detector’s errors and generates training examples to avoid these
errors in the future. The learning component assumes that both
the tracker and the detector can fail. By the virtue of the
learning, the detector generalizes to more object appearances
and discriminates against background.

4 P-N LEARNING
This section investigates the learning component of the TLD
framework. The goal of the component is to improve the
performance of an object detector by online processing of
a video stream. In every frame of the stream, we wish to
evaluate the current detector, identify its errors and update
it to avoid these errors in the future. The key idea of P-N
learning is that the detector errors can be identified by two
types of “experts”. P-expert identifies only false negatives, N-
expert identifies only false positives. Both of the experts make
errors themselves, however, their independence enables mutual
compensation of their errors.

Section 4.1 formulates the P-N learning as a semi-
supervised learning method. Section 4.2 models the P-N learn-
ing as a discrete dynamical system and finds conditions under
which the learning guarantees improvement of the detector.
Section 4.3 performs several experiments with synthetically
generated experts. Finally, section 4.4 applies the P-N learning
to training object detectors from video and proposes experts
that could be used in practice.

4.1 Formalization
Let x be an example from a feature-space X and y be a label
from a space of labels Y = {−1, 1}. A set of examples X

is called an unlabeled set, Y is called a set of labels and
L = {(x, y)} is called a labeled set. The input to the P-N
learning is a labeled set Ll and an unlabeled set Xu, where
l � u. The task of P-N learning is to learn a classifier f :
X → Y from labeled set Ll and bootstrap its performance
by the unlabeled set Xu. Classifier f is a function from a
family F parameterized by Θ. The family F is subject to
implementation and is considered fixed in training, the training
therefore corresponds to estimation of the parameters Θ.

The P-N learning consists of four blocks: (i) a classifier to
be learned, (ii) training set – a collection of labeled training
examples, (iii) supervised training – a method that trains a
classifier from training set, and (iv) P-N experts – functions
that generate positive and negative training examples during
learning. See figure 3 for illustration.

The training process is initialized by inserting the labeled
set L to the training set. The training set is then passed to
supervised learning which trains a classifier, i.e. estimates the
initial parameters Θ0. The learning process then proceeds by
iterative bootstrapping. In iteration k, the classifier trained in
previous iteration classifies the entire unlabeled set, yku =
f(xu|Θk−1) for all xu ∈ Xu. The classification is analyzed
by the P-N experts which estimate examples that have been
classified incorrectly. These examples are added with changed
labels to the training set. The iteration finishes by retraining
the classifier, i.e. estimation of Θk. The process iterates until
convergence or other stopping criterion.

The crucial element of P-N learning is the estimation of
the classifier errors. The key idea is to separate the estimation
of false positives from the estimation of false negatives. For
this reason, the unlabeled set is split into two parts based
on the current classification and each part is analyzed by an
independent expert. P-expert analyzes examples classified as
negative, estimates false negatives and adds them to training
set with positive label. In iteration k, P-expert outputs n+(k)
positive examples. N-expert analyzes examples classified as
positive, estimates false positives and adds them with neg-
ative label to the training set. In iteration k, the N-expert
outputs n−(k) negative examples. The P-expert increases the
classifier’s generality. The N-expert increases the classifier’s
discriminability.

Relation to supervised bootstrap. To put the P-N learning
into broader context, let us consider that the labels of set
Xu are known. Under this assumption it is straightforward to
recognize misclassified examples and add them to the training
set with correct labels. Such a strategy is commonly called
(supervised) bootstraping [56]. A classifier trained using such
supervised bootstrap focuses on the decision boundary and
often outperforms a classifier trained on randomly sampled
training set [56]. The same idea of focusing on the decision
boundary underpins the P-N learning with the difference that
the labels of the set Xu are unknown. P-N learning can
therefore be viewed as a generalization of standard bootstrap to
unlabeled case where labels are not given but rather estimated
using the P-N experts. As any other process, also the P-
N experts make errors by estimating the labels incorrectly.
Such errors propagate through the training, which will be
theoretically analyzed in the following section.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 5

4.2 Stability

This section analyses the impact of the P-N learning on the
classifier performance. We assume an abstract classifier (e.g.
nearest neighbour) the performance of which is measured
on Xu. The classifier initially classifies the unlabeled set at
random and then corrects its classification for those examples
that were returned by the P-N experts. For the purpose of
the analysis, let us consider that the labels of Xu are known.
This will allow us to measure both the classifier errors and the
errors of the P-N experts. The performance of this classifier
will be characterized by a number of false positives α(k) and a
number of false negatives β(k), where k indicates the iteration
of training.

In iteration k, the P-expert outputs n+c (k) positive examples
which are correct (positive based on the ground truth), and
n+f (k) positive examples which are false (negative based
on the ground truth), which forces the classifier to change
n+(k) = n+c (k) + n+f (k) negatively classified examples
to positive. Similarly, the N-experts outputs n−c (k) correct
negative examples and n−f (k) false negative examples, which
forces the classifier to change n−(k) = n−c (k) + n−f (k)
examples classified as positive to negative. The false positive
and false negative errors of the classifier in the next iteration
thus become:

α(k + 1) = α(k)− n−c (k) + n+f (k) (1a)

β(k + 1) = β(k)− n+c (k) + n−f (k). (1b)

Equation 1a shows that false positives α(k) decrease if
n−c (k) > n+f (k), i.e. number of examples that were correctly
relabeled to negative is higher than the number of examples
that were incorrectly relabeled to positive. Similarly, the false
negatives β(k) decrease if n+c (k) > n−f (k).

Quality measures. In order to analyze the convergence of
the P-N learning, a model needs to be defined that relates the
quality of the P-N experts to the absolute number of positive
and negative examples output in each iteration. The quality of
the P-N experts is characterized by four quality measures:

• P-precision – reliability of the positive labels, i.e. the
number of correct positive examples divided by the
number of all positive examples output by the P-expert,
P+ = n+c /(n

+
c + n+f).

• P-recall – percentage of identified false negative errors,
i.e. the number of correct positive examples divided by
the number of false negatives output by the classifier,
R+ = n+c / β.

• N-precision – reliability of negative labels, i.e. the number
of correct negative examples divided by the number of
all positive examples output by the N-expert, P− =
n−c /(n

−
c + n−f).

• N-recall – percentage of recognized false positive errors,
i.e. the number of correct negative examples divided by
the number of all false positives output by the classifier,
R− = n−c /α.

Given these quality measures, the number of correct and
false examples output by P-N experts at iteration k have the

l1
=0, l2< 1

a

b b b

a a

l1
=0, l2=1 l1

=0, l2> 1

Fig. 4. Evolution of errors during P-N learning for differ-
ent eigenvalues of matrix M. The errors are decreasing
(LEFT), are static (MIDDLE) or grow (RIGHT).

following form:

n+c (k) = R+ β(k), n+f (k) =
(1− P+)

P+
R+ β(k) (2a)

n−c (k) = R− α(k), n−f (k) =
(1− P−)

P−
R− α(k). (2b)

By combining the equation 1a, 1b, 2a and 2b we obtain the
following equations:

α(k + 1) = (1−R−)α(k) +
(1− P+)

P+
R+ β(k) (3a)

β(k + 1) =
(1− P−)

P−
R− α(k) + (1−R+)β(k). (3b)

After defining the state vector ~x(k) =
[
α(k) β(k)

]T
and a

2× 2 matrix M as

M =

[
1−R− (1−P+)

P+ R+

(1−P−)
P− R− (1−R+)

]
(4)

it is possible to rewrite the equations as

~x(k + 1) = M~x(k).

This is a recursive equations that correspond to a discrete
dynamical system. The system shows how the error of the
classifier (encoded by the system state) propagates from one
iteration of P-N learning to another. Our goal is to show, under
which conditions the error in the system drops.

Based on the well founded theory of dynamical systems
[57], [58], the state vector ~x converges to zero if both eigen-
values λ1, λ2 of the transition matrix M are smaller than one.
Note that the matrix M is a function of the expert’s quality
measures. Therefore, if the quality measures are known, it
allows the determine the stability of the learning. Experts for
which corresponding matrix M has both eigenvalues smaller
than one will be called error-canceling. Figure 4 illustrates
the evolution of error of the classifier when λ1 = 0 and (i)
λ2 < 1, (ii) λ2 = 1, (iii) λ2 > 1.

In the above analysis the quality measures were assumed to
be constant and the classes separable. In practice, it is not not
possible to identify all the errors of the classifier. Therefore,
the training does not converge to error-less classifier, but
may stabilize at a certain level. In case the quality measure
vary, the performance increases in those iterations where the
eigenvalues of M are smaller than one.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 6

0 1000

0

1

Number of Frames Processed

F
-
M

e
a
s
u

re

0.0

0.5

0.6

Fig. 5. Performance of a detector as a function of the
number of processed frames. The detectors were trained
by synthetic P-N experts with certain level of error. The
classifier is improved up to error 50% (BLACK), higher
error degrades it (RED).

4.3 Experiments with simulated experts

In this experiment, a classifier is trained on a real sequence
using simulated P-N experts. Our goal is to analyze the
learning performance as a function of the expert’s quality
measures.

The analysis is carried on sequence CAR (see figure 12).
In the first frame of the sequence, we train a random forrest
classifier using affine warps of the initial patch and the back-
ground from the first frame. Next, we perform a single run over
the sequence. In every frame, the classifier is evaluated, the
simulated experts identify errors and the classifier is updated.
After every update, the classifier is evaluated on the entire
sequence to measure its performance using f-measure. The
performance is then drawn as a function of the number of
processed frames and the quality of the P-N experts.

The P-N experts are characterized by four quality measures,
P+, R+, P−, R−. To reduce this 4D space, the parameters are
set to P+ = R+ = P− = R− = 1 − ε, where ε represents
error of the expert. The transition matrix then becomes M =
ε1, where 1 is a 2x2 matrix with all elements equal to 1. The
eigenvalues of this matrix are λ1 = 0, λ2 = 2ε. Therefore the
P-N learning should be improving the performance if ε < 0.5.
The error is varied in the range ε = 0 : 0.9.

The experts are simulated as follows. In frame k, the classi-
fier generates β(k) false negatives. P-expert relabels n+c (k) =
(1− ε)β(k) of them to positive which gives R+ = 1− ε. In
order to simulate the required precision P+ = 1 − ε, the P-
expert relabels additional n+f (k) = ε β(k) background samples
to positive. Therefore, the total number of examples relabeled
to positive in iteration k is n+ = n+c (k)+n+f (k) = β(k). The
N-experts were generated similarly.

The performance of the detector as a function of number of
processed frames is depicted in figure 5. Notice that if ε ≤ 0.5
the performance of the detector increases with more training
data. In general, ε = 0.5 will give unstable results although in
this sequence it leads to improvements. Increasing the noise-
level further leads to sudden degradation of the classifier.
These results are in line with the P-N Learning theory.

a) scanning grid b) unacceptable labeling c) acceptable labeling

Fig. 6. Illustration of a scanning grid and corresponding
volume of labels. Red dots correspond to positive labels.

4.4 Design of real experts

This section applies the P-N learning to training an object
detector from a labeled frame and a video stream. The de-
tector consists of a binary classifier and a scanning window,
and the training examples correspond to image patches. The
labeled examples Xl are extracted from the labeled frame. The
unlabeled data Xu are extracted from the video stream.

The P-N learning is initialized by supervised training of
so-called initial detector. In every frame, the P-N learning
performs the following steps: (i) evaluation of the detector
on the current frame, (ii) estimation of the detector errors
using the P-N experts, (iii) update of the detector by labeled
examples output by the experts. The detector obtained at the
end of the learning is called the final detector.

Figure 6 (a) that shows three frames of a video sequence
overlaid with a scanning grid. Every bounding box in the grid
defines an image patch, the label of which is represented as
a colored dot in (b,c). Every scanning window-based detector
considers the patches as independent. Therefore, there are 2N

possible label combinations in a single frame, where N is the
number of bounding boxes in the grid. Figure 6 (b) shows one
such labeling. The labeling indicates, that the object appears
in several locations in a single frame and that there is no
temporal continuity in the motion. Such labeling is unlikely
to be correct. On the other hand, if the detector outputs results
depicted in (c) the labeling is plausible since the object appears
at one location in each frame and the detected locations build
up a trajectory in time. In other words, the labels of the patches
are dependent. We refer to such a property as structure. The
key idea of the P-N experts is to exploit the structure in data
to identify the detector errors.

P-expert exploits the temporal structure in the video and
assumes that the object moves along a trajectory. The P-expert
remembers the location of the object in the previous frame and
estimates the object location in current frame using a frame-
to-frame tracker. If the detector labeled the current location as
negative (i.e. made false negative error), the P-expert generates
a positive example.

N-expert exploits the spatial structure in the video and
assumes that the object can appear at a single location only.
The N-expert analyzes all responses of the detector in the
current frame and the response produced by the tracker and
selects the one that is the most confident. Patches that are not
overlapping with the maximally confident patch are labeled
as negative. The maximally confident patch re-initializes the
location of the tracker.

Figure 7 depicts a sequence of three frames, the object

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 7

Fig. 7. Illustration of the examples output by the P-N
experts. The third row shows error compensation.

to be learned is a car within the yellow bounding box. The
car is tracked from frame to frame by a tracker. The tracker
represents the P-expert that outputs positive training examples.
Notice that due to occlusion of the object, the output of P-
expert in time t + 2 outputs incorrect positive example. N-
expert identifies maximally confident patch (denoted by a red
star) and labels all other detections as negative. Notice that the
N-expert is discriminating against another car, and in addition
corrected the error made by the P-expert in time t+ 2.

5 IMPLEMENTATION OF TLD
This section describes our implementation of the TLD frame-
work. The block diagram is shown in figure 8.

5.1 Prerequisites

At any time instance, the object is represented by its state.
The state is either a bounding box or a flag indicating that
the object is not visible. The bounding box has a fixed aspect
ratio (given by the initial bounding box) and is parameterized
by its location and scale. Other parameters such as in-plane
rotation are not considered. Spatial similarity of two bounding
boxes is measured using overlap, which is defined as a ratio
between intersection and union.

A single instance of the object’s appearance is represented
by an image patch p. The patch is sampled from an image
within the object bounding box and then is re-sampled to a
normalized resolution (15x15 pixels) regardless of the aspect
ratio. Similarity between two patches pi, pj is defined as

S(pi, pj) = 0.5(NCC(pi, pj) + 1), (5)

where NCC is a Normalized Correlation Coefficient.
A sequence of object states defines a trajectory of an object

in a video volume as well as the corresponding trajectory
in the appearance (feature) space. Note that the trajectory is
fragmented as the object may not be visible.

5.2 Object model

Object model M is a data structure that represents
the object and its surrounding observed so far. It is
a collection of positive and negative patches, M =

Tracking

Detection

In
te

g
ra

to
r Object

state
Learning

update
detector

Video
frame

Object model

Object
state

update
tracker

Fig. 8. Detailed block diagram of the TLD framework.

{p+1 , p
+
2 , . . . , p

+
m, p

−
1 , p

−
2 , . . . , p

−
n }, where p+ and p− repre-

sent the object and background patches, respectively. Positive
patches are ordered according to the time when the patch was
added to the collection. p+1 represents the first positive patch
added to the collection, p+m is the positive patch added last.

Given an arbitrary patch p and object model M , we define
several similarity measures:

1) Similarity with the positive nearest neighbor,
S+(p,M) = maxp+

i ∈M
S(p, p+i).

2) Similarity with the negative nearest neighbor,
S−(p,M) = maxp−

i ∈M
S(p, p−i).

3) Similarity with the positive nearest neighbor consid-
ering 50% earliest positive patches, S+

50%(p,M) =
maxp+

i ∈M
∧

i<m
2
S(p, p+i).

4) Relative similarity, Sr = S+

S++S− . Relative similarity
ranges from 0 to 1, higher values mean more confident
that the patch depicts the object.

5) Conservative similarity, Sc =
S+
50%

S+
50%

+S− . Conservative
similarity ranges from 0 to 1. High value of Sc mean
more confidence that the patch resembles appearance
observed in the first 50% of the positive patches.

Nearest Neighbor (NN) classifier. The similarity measures
(Sr, Sc) are used throughout TLD to indicate how much
an arbitrary patch resembles the appearances in the model.
The Relative similarity is used to define a nearest neighbor
classifier. A patch p is classified as positive if Sr(p,M) > θNN
otherwise the patch is classified as negative. A classification
margin is defined as Sr(p,M)− θNN. Parameter θNN enables
tuning the NN classifier either towards recall or precision.

Model update. To integrate a new labeled patch to the
object model we use the following strategy: the patch is
added to the collection only if the its label estimated by NN
classifier is different from the label given by the P-N experts.
This leads to a significant reduction of accepted patches at
the cost of coarser representation of the decision boundary.
Therefore we improve this strategy by adding also patches
where the classification margin is smaller than λ. With larger
λ, the model accepts more patches which leads to better
representation of the decision boundary. In our experiments we
use λ = 0.1 which compromises the accuracy of representation
and the speed of growing of the object model. Exact setting
of this parameter is not critical.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 8

Ensemble classifier 1-NN classifier

Patch

variance

Rejected patches

Accepted

patches

(,...,)

1

1

2

3
2

3

Fig. 9. Block diagram of the object detector.

5.3 Object detector

The detector scans the input image by a scanning-window and
for each patch decides about presence or absence of the object.

Scanning-window grid. We generate all possible scales and
shifts of an initial bounding box with the following parameters:
scales step = 1.2, horizontal step = 10% of width, vertical
step = 10% of height, minimal bounding box size = 20 pixels.
This setting produces around 50k bounding boxes for a QVGA
image (240x320), the exact number depends on the aspect ratio
of the initial bounding box.

Cascaded classifier. As the number of bounding boxes
to be evaluated is large, the classification of every single
patch has to be very efficient. A straightforward approach
of directly evaluating the NN classifier is problematic as it
involves evaluation of the Relative similarity (i.e. search for
two nearest neighbours). As illustrated in figure 9, we structure
the classifier into three stages: (i) patch variance, (ii) ensemble
classifier, and (iii) nearest neighbor. Each stage either rejects
the patch in question or passes it to the next stage. In our
previous work [59] we used only the first two stages. Later
on, we observed that the performance improves if the third
stage is added. Templates allowed us to better estimate the
reliability of the detection.

5.3.1 Patch variance

Patch variance is the first stage of our cascade. This stage
rejects all patches, for which gray-value variance is smaller
than 50% of variance of the patch that was selected for
tracking. The stage exploits the fact that gray-value variance
of a patch p can be expressed as E(p2) − E2(p), and that
the expected value E(p) can be measured in constant time
using integral images [35]. This stage typically rejects more
than 50% of non-object patches (e.g. sky, street). The variance
threshold restricts the maximal appearance change of the
object. However, since the parameter is easily interpretable,
it can be adjusted by a user for particular application. In all
of our experiments we kept it constant.

5.3.2 Ensemble classifier

Ensemble classifier is the second stage of our detector. The in-
put to the ensemble is an image patch that was not rejected by
the variance filter. The ensemble consists of n base classifiers.
Each base classifier i performs a number of pixel comparisons
on the patch resulting in a binary code x, which indexes to an
array of posteriors Pi(y|x), where y ∈ {0, 1}. The posteriors
of individual base classifiers are averaged and the ensemble
classifies the patch as the object if the average posterior is
larger than 50%.

1

0

0

0

1

1

0

1

1

1

pixel comparisons binary codeinput image + bounding box

blur measure

blurred image

output

Fig. 10. Conversion of a patch to a binary code.

Pixel comparisons. Every base classifier is based on a set
of pixel comparisons. Similarly as in [60], [61], [62], the pixel
comparisons are generated offline at random and stay fixed in
run-time. First, the image is convolved with a Gaussian kernel
with standard deviation of 3 pixels to increase the robustness
to shift and image noise. Next, the predefined set of pixel
comparison is stretched to the patch. Each comparison returns
0 or 1 and these measurements are concatenated into x.

Generating pixel comparisons. The vital element of en-
semble classifiers is the independence of the base classi-
fiers [63]. The independence of the classifiers is in our case
enforced by generating different pixel comparisons for each
base classifier. First, we discretize the space of pixel locations
within a normalized patch and generate all possible horizontal
and vertical pixel comparisons. Next, we permutate the com-
parisons and split them into the base classifiers. As a result,
every classifier is guaranteed to be based on a different set of
features and all the features together uniformly cover the entire
patch. This is in contrast to standard approaches [60], [61],
[62], where every pixel comparison is generated independent
of other pixel comparisons.

Posterior probabilities. Every base classifier i maintains a
distribution of posterior probabilities Pi(y|x). The distribution
has 2d entries, where d is the number of pixel comparisons.
We use 13 comparison, which gives 8192 possible codes that
index to the posterior probability. The probability is estimated
as Pi(y|x) = #p

#p+#n , where #p and #n correspond to
number of positive and negative patches, respectively, that
were assigned the same binary code.

Initialization and update. In the initialization stage, all
base posterior probabilities are set to zero, i.e. vote for negative
class. During run-time the ensemble classifier is updated as
follows. The labeled example is classified by the ensemble
and if the classification is incorrect, the corresponding #p
and #n are updated which consequently updates Pi(y|x).

5.3.3 Nearest neighbor classifier
After filtering the patches by the variance filter and the ensem-
ble classifier, we are typically left with several of bounding
boxes that are not decided yet (≈ 50). Therefore, we can use
the online model and classify the patch using a NN classifier.
A patch is classified as the object if Sr(p,M) > θNN, where
θNN = 0.6. This parameter has been set empirically and its
value is not critical. We observed that similar performance
is achieved in the range (0.5-0.7). The positively classified
patches represent the responses of the object detector. When
the number of templates in NN classifier exceeds some thresh-
old (given by memory), we use random forgetting of templates.
We observed that the number of templates stabilizes around

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 9

several hundred which can be easily stored in memory.

5.4 Tracker
The tracking component of TLD is based on Median-Flow
tracker [64] extended with failure detection. Median-Flow
tracker represents the object by a bounding box and estimates
its motion between consecutive frames. Internally, the tracker
estimates displacements of a number of points within the
object’s bounding box, estimates their reliability, and votes
with 50% of the most reliable displacements for the motion of
the bounding box using median. We use a grid of 10×10 points
and estimate their motion using pyramidal Lucas-Kanade
tracker [65]. Lucas-Kanade uses 2 levels of the pyramid and
represents the points by 10× 10 patches.

Failure detection. Median-Flow [64] tracker assumes visi-
bility of the object and therefore inevitably fails if the object
gets fully occluded or moves out of the camera view. To
identify these situations we use the following strategy. Let di
denote the displacement of a single point of the Median-Flow
tracker and dm be the median displacement. A residual of a
single displacement is then defined as |di − dm|. A failure of
the tracker is declared if median|di − dm|>10 pixels. This
strategy is able to reliably identify failures caused by fast
motion or fast occlusion of the object of interest. In that
case, the individual displacement become scattered around the
image and the residual rapidly increases (the threshold of 10
pixels is not critical). If the failure is detected, the tracker does
not return any bounding box.

5.5 Integrator
Integrator combines the bounding box of the tracker and the
bounding boxes of the detector into a single bounding box
output by TLD. TIf neither the tracker not the detector output
a bounding box, the object is declared as not visible. Other-
wise the integrator outputs the maximally confident bounding
box, measured using Conservative similarity Sc. The tracker
and detector have identical priorities, however they represent
fundamentally different estimates of the object state. While
the detector localizes already known templates, the tracker
localizes potentially new templates and thus can bring new
data for detector.

5.6 Learning component
The task of the learning component is to initialize the object
detector in the first frame and update the detector in run-time
using the P-expert and the N-expert. An alternative explanation
of the experts, called growing and pruning, can be found
in [66].

5.6.1 Initialization
In the first frame, the learning component trains the initial
detector using labeled examples generated as follows. The
positive training examples are synthesized from the initial
bounding box. First we select 10 bounding boxes on the
scanning grid that are closest to the initial bounding box. For
each of the bounding box, we generate 20 warped versions

Fig. 11. Illustration of P-expert: a) object model and
thecore in feature space (gray blob), b) unreliable (dotted)
and reliable (thick) trajectory , c) the object model and the
core after the update. Red dots are positive examples,
black dots are negative, cross denotes end of a trajectory.

by geometric transformations (shift ±1%, scale change ±1%,
in-plane rotation ±10◦) and add them with Gaussian noise
(σ = 5) on pixels. The result is 200 synthetic positive patches.
Negative patches are collected from the surrounding of the
initializing bounding box, no synthetic negative examples are
generated. If the application requires fast initialization, we sub-
sample the generated training examples. The labeled training
patches are then used to update the object model as discussed
in subsection 5.2 and the ensemble classifier as discussed in
subsection 5.3. After the initialization the object detector is
ready for run-time and to be updated by a pair of P-N experts.

5.6.2 P-expert
The goal of P-expert is to discover new appearances of the
object and thus increase generalization of the object detector.
Section 4.4 suggested that the P-expert can exploit the fact
that the object moves on a trajectory and add positive examples
extracted from such a trajectory. However, in the TLD system,
the object trajectory is generated by a combination of a tracker,
detector and the integrator. This combined process traces a
discontinuous trajectory, which is not correct all the time. The
challenge of the P-expert is to identify reliable parts of the
trajectory and use it to generate positive training examples.

To identify the reliable parts of the trajectory, the P-expert
relies on an object model M . See figure 11 for reference.
Consider an object model represented as colored points in a
feature space. Positive examples are represented by red dots
connected by a directed curve suggesting their order, negative
examples are black. Using the conservative similarity Sc, one
can define a subset in the feature space, where Sc is larger
than a threshold. We refer to this subset as the core of the
object model. Note that the core is not a static structure, but
it grows as new examples are coming to the model. However,
the growth is slower than the entire model.

P-expert identifies the reliable parts of the trajectory as
follows. The trajectory becomes reliable as soon as it enters
the core and remain reliable until is re-initialized or the tracker
identifies its own failure. Figure 11 (b) illustrates the reliable
and non-reliable trajectory in feature space. And figure 11
(c) shows how the core changes after accepting new positive
examples from reliable trajectory.

In every frame, the P-expert outputs a decision about the
reliability of the current location (P-expert is an online pro-
cess). If the current location is reliable, the P-expert generates

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 10

a set of positive examples that update the object model and
the ensemble classifier. We select 10 bounding boxes on the
scanning grid that are closest to the current bounding box. For
each of the bounding box, we generate 10 warped versions
by geometric transformations (shift ±1%, scale change ±1%,
in-plane rotation ±5◦) and add them with Gaussian noise
(σ = 5). The result is 100 synthetic positive examples for
ensemble classifier.

5.6.3 N-expert
N-expert generates negative training examples. Its goal is to
discover clutter in the background against which the detector
should discriminate. The key assumption of the N-expert is
that the object can occupy at most one location in the image.
Therefore, if the object location is known, the surrounding of
the location is labeled as negative. The N-expert is applied
at the same time as P-expert, i.e. if the trajectory is reliable.
In that case, patches that are far from current bounding box
(overlap < 0.2) are all labeled as negative. For the update of
the object detector and the ensemble classifier, we consider
only those patches that were not rejected neither by the
variance filter nor the ensemble classifier.

6 QUANTITATIVE EVALUATION

This section reports on a set of quantitative experiments
comparing the TLD with relevant algorithms. The first two
experiments (section 6.1, section 6.2) evaluate our system on
benchmark sequences that are commonly used in the litera-
ture. In both of these experiments, a saturated performance
is achieved. Section 6.3 therefore introduces a new, more
challenging dataset. Using this dataset, section 6.4 focuses
on evaluation of the learning component of TLD. Finally,
section 6.5 evaluates the whole system.

Every experiment in this section adopts the following eval-
uation protocol. A tracker is initialized in the first frame of a
sequence and tracks the object of interest up to the end. The
produced trajectory is then compared to ground truth using a
number of measures specified in the particular experiment.

6.1 Comparison 1: CoGD
TLD was compared with results reported in [33] which re-
ports on performance of 5 trackers (Iterative Visual Track-
ing (IVT) [22], Online Discriminative Features (ODV) [27],
Ensemble Tracking (ET) [28], Multiple Instance Learning
(MIL) [30], and Co-trained Generative-Discriminative track-
ing (CoGD) [33]) on 6 sequences. The sequences include
full occlusions and disappearance of the object. CoGD [33]
dominated on these sequences as it enabled re-detection of
the object. As in [33], the performance was accessed using
the Number of successfully tracked frames, i.e. the number of
frames where overlap with a ground truth bounding box is
larger than 50%. Frames where the object was occluded were
not counted. For instance, for a sequence of 100 frames with
20 occluded frames, the maximal possible score is 80.

Table 1 shows the results. TLD achieved the maximal
possible score in the sequences and matched the performance
of CoGD [33]. It was reported in [33] that CoGD runs at

TABLE 1
Number of successfully tracked frames – TLD in

comparison to results reported in [33].

Sequence Frames Occ. IVT ODF ET MIL CoGD TLD
[22] [27] [28] [30] [33]

David *761 0 17 - 94 135 759 761
Jumping 313 0 75 313 44 313 313 313
Pedestrian 1 140 0 11 6 22 101 140 140
Pedestrian 2 338 93 33 8 118 37 240 240
Pedestrian 3 184 30 50 5 53 49 154 154
Car 945 143 163 - 10 45 802 802

TABLE 2
Recall – TLD1.0 in comparison to results reported

in [67]. Bold font means the best score.

Sequence Frames OB ORF FT MIL Prost TLD
[29] [68] [20] [30] [67]

Girl 452 24.0 - 70.0 70.0 89.0 93.1
David 502 23.0 - 47.0 70.0 80.0 100.0
Sylvester 1344 51.0 - 74.0 74.0 73.0 97.4
Face occlusion 1 858 35.0 - 100.0 93.0 100.0 98.9
Face occlusion 2 812 75.0 - 48.0 96.0 82.0 96.9
Tiger 354 38.0 - 20.0 77.0 79.0 88.7
Board 698 - 10.0 67.9 67.9 75.0 87.1
Box 1161 - 28.3 61.4 24.5 91.4 91.8
Lemming 1336 - 17.2 54.9 83.6 70.5 85.8
Liquor 1741 - 53.6 79.9 20.6 83.7 91.7
Mean - 42.2 27.3 58.1 64.8 80.4 92.5

2 frames per second, and requires several frames (typically
6) for initialization. In contrast, TLD requires just a single
frame and runs at 20 frames per second. This experiment
demonstrates that neither the generative trackers (IVT [22]),
nor the discriminative trackers (ODF [27], ET [28], MIL [30])
are able to handle full occlusions or disappearance of the
object. CoGD will be evaluated in detail in section 6.5.

6.2 Comparison 2: Prost
TLD was compared with the results reported in [67] which
reports on performance of 5 algorithms (Online Boosting
(OB) [29], Online Random Forrest (ORF) [68], Fragment-
baset Tracker (FT) [20], MIL [30] and Prost [67]) on 10
benchmark sequences. The sequences include partial occlu-
sions and pose changes. The performance was reported using
two measures: (i) Recall - number of true positives divided by
the length of the sequence (true positive is considered if the
overlap with ground truth is > 50%), and (ii) Average local-
ization Error - average distance between center of predicted
and ground truth bounding box. TLD estimates scale of an
object. However, the algorithms compared in this experiment
perform tracking in single scale only. In order to make a fair
comparison, the scale estimation was not used.

Table 2 shows the performance measured by Recall. TLD
scored best in 9/10 outperforming by more than 12% the
second best (Prost [67]). Table 2 shows the performance
measured by Average localization error. TLD scored best in
7/10 being 1.6 times more accurate than the second best.

6.3 TLD dataset
The experiments 6.1 and 6.2 show that TLD performs well
on benchmark sequences. We consider these sequences as
saturated and therefore introduce new, more challenging data

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 11

TABLE 3
Average localization error – TLD in comparison to results

reported in [67]. Bold means best.

Sequence Frames OB ORF FT MIL Prost TLD
[29] [68] [20] [30] [67]

Girl 452 43.3 - 26.5 31.6 19.0 18.1
David 502 51.0 - 46.0 15.6 15.3 4.0
Sylvester 1344 32.9 - 11.2 9.4 10.6 5.9
Face occlusion 1 858 49.0 - 6.5 18.4 7.0 15.4
Face occlusion 2 812 19.6 - 45.1 14.3 17.2 12.6
Tiger 354 17.9 - 39.6 8.4 7.2 6.4
Board 698 - 154.5 154.5 51.2 37.0 10.9
Box 1161 - 145.4 145.4 104.5 12.1 17.4
Lemming 1336 - 166.3 166.3 14.9 25.4 16.4
Liquor 1741 - 67.3 67.3 165.1 21.6 6.5
Mean - 32.9 133.4 78.0 46.1 18.4 10.9

TABLE 4
TLD dataset

Name Frames Mov. Partial Full Pose Illum. Scale Similar
camera occ. occ. change change change objects

1. David 761 yes yes no yes yes yes no
2. Jumping 313 yes no no no no no no
3. Pedestrian 1 140 yes no no no no no no
4. Pedestrian 2 338 yes yes yes no no no yes
5. Pedestrian 3 184 yes yes yes no no no yes
6. Car 945 yes yes yes no no no yes
7. Motocross 2665 yes yes yes yes yes yes yes
8. Volkswagen 8576 yes yes yes yes yes yes yes
9. Carchase 9928 yes yes yes yes yes yes yes
10. Panda 3000 yes yes yes yes yes yes no

set. We started from the 6 sequences used in experiment 6.1
and collected 4 additional sequences: Motocross, Volkswagen,
Carchase and Panda. The new sequences are long and contain
all the challenges typical for long-term tracking. Table 4 lists
the properties of the sequences and figure 12 shows corre-
sponding snapshots. The sequences were manually annotated.
More than 50% of occlusion or more than 90 degrees of out-
of-plane rotation was annotated as ”not visible”.

The performance is evaluated using precision P , recall R
and f-measure F . P is the number of true positives divided by
number of all responses, R is the number true positives divided
by the number of object occurrences that should have been
detected. F combines these two measures as F = 2PR/(P +
R). A detection was considered to be correct if its overlap
with ground truth bounding box was larger than 50%.

6.4 Improvement of the object detector

This experiment quantitatively evaluates the learning com-
ponent of the TLD system on the TLD dataset. For every
sequence, we compare the Initial Detector (trained in the first
frame) and the Final Detector (obtained after one pass through
the training). Next, we measure the quality of the P-N experts
(P+, R+, P−,R−) in every iteration of the learning and report
the average score.

Table 5 shows the achieved results. The scores of the
Initial Detector are shown in the 3rd column. Precision is
above 79% high except for sequence 9, which contains a
significant background clutter and objects similar to the target
(cars). Recall is low for the majority of sequences except for
sequence 5 where the recall is 73%. High recall indicates that
the appearance of the object does not vary significantly and
training the Initial Detector is sufficient.

The scores of the Final Detector are displayed in the 4th
column. Recall of the detector was significantly increased with
little drop of precision. In sequence 9, even the precision was
increased from 36% to 90%, which shows that the false pos-
itives of the Initial Detector were identified by N-experts and
corrected. Most significant increase of the performance is for
sequences 7-10 which are the most challenging of the whole
set. The Initial Detector fails here but for the Final Detector
the f-measure in the range of 25-83%. This demonstrates the
improvement of the detector using P-N learning.

The last three columns of Table 5 report the performance
of P-N experts. Both experts have precision higher than 60%
except for sequence 10 which has P-precision just 31%. Recall
of the experts is in the range of 2-78%. The last column shows
the corresponding eigenvalues of matrix M. Notice that all
eigenvalues are smaller than one. This demonstrates that the
proposed experts work across different scenarios. The larger
these eigenvalues are, the less the P-N learning improves the
performance. For example in sequence 10 one eigenvalue is
0.99 which reflects poor performance of the P-N experts. The
target of this sequence is an animal which performs out-of-
plane motion. Median-Flow tracker is not very reliable in
this scenario, but still P-N learning exploits the information
provided by the tracker and improves the detector.

6.5 Comparison 3: TLD dataset
This experiment evaluates the proposed system on the TLD
dataset and compares it to five trackers: (1) OB [29], (2)
SB [31], (3) BS [69], (4) MIL [30], and (5) CoGD [33].
Binaries for trackers (1-3) are available in the Internet1.
Trackers (4,5) were kindly evaluated directly by their authors.

Since this experiment compares various trackers for which
the default initialization (defined by ground truth) might not
be optimal, we allowed the initialization to be selected by the
authors. For instance, when tracking a motorbike racer, some
algorithms might perform better when tracking only a part
of the racer. When comparing thus obtained trajectories to
ground truth, we performed normalization (shift, aspect and
scale correction) of the trajectory so that the first bounding
box matched the ground truth, all remaining bounding boxes
were normalized with the same parameters. The normalized
trajectory was then directly compared to ground truth using
overlap and true positive was considered if the overlap was
larger than 25%. As we allowed different initialization, the
earlier used threshold 50% was found to be too restrictive.

Sequences Motocross and Volkswagen were evaluated by
the MIL tracker [30] only up to the frame 500 as the algorithm
required loading all images into memory in advance. Since the
algorithm failed during this period, the remaining frames were
considered as failed.

Table 6 show the achieved performance evaluated by
precision/recall/f-measure. The last row shows a weighted
average performance (weighted by number of frames in the
sequence). Considering the overall performance accessed by
F-measure, TLD achieved the best performance of 81% signif-
icantly outperforming the second best approach that achieved

1. http://www.vision.ee.ethz.ch/boostingTrackers/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 12

TABLE 5
Performance analysis of P-N learning. The Initial Detector is trained on the first frame. The Final Detector is trained

using the proposed P-N learning. The last three columns show internal statistics of the training process.

Sequence Frames Initial Detector Final Detector P-expert N-expert Eigenvalues
Precision / Recall / F-measure Precision / Recall / F-measure P+, R+ P−, R− λ1, λ2

1. David 761 1.00 / 0.01 / 0.02 1.00 / 0.32 / 0.49 1.00 / 0.08 0.99 / 0.17 0.92 / 0.83
2. Jumping 313 1.00 / 0.01 / 0.02 0.99 / 0.88 / 0.93 0.86 / 0.24 0.98 / 0.30 0.70 / 0.77
3. Pedestrian 1 140 1.00 / 0.06 / 0.12 1.00 / 0.12 / 0.22 0.81 / 0.04 1.00 / 0.04 0.96 / 0.96
4. Pedestrian 2 338 1.00 / 0.02 / 0.03 1.00 / 0.34 / 0.51 1.00 / 0.25 1.00 / 0.24 0.76 / 0.75
5. Pedestrian 3 184 1.00 / 0.73 / 0.84 0.97 / 0.93 / 0.95 0.98 / 0.78 0.98 / 0.68 0.32 / 0.22
6. Car 945 1.00 / 0.04 / 0.08 0.99 / 0.82 / 0.90 1.00 / 0.52 1.00 / 0.46 0.48 / 0.54
7. Motocross 2665 1.00 / 0.00 / 0.00 0.92 / 0.32 / 0.47 0.96 / 0.19 0.84 / 0.08 0.92 / 0.81
8. Volkswagen 8576 1.00 / 0.00 / 0.00 0.92 / 0.75 / 0.83 0.70 / 0.23 0.99 / 0.09 0.91 / 0.77
9. Car Chase 9928 0.36 / 0.00 / 0.00 0.90 / 0.42 / 0.57 0.64 / 0.19 0.95 / 0.22 0.76 / 0.83
10. Panda 3000 0.79 / 0.01 / 0.01 0.51 / 0.16 / 0.25 0.31 / 0.02 0.96 / 0.19 0.81 / 0.99

1. David 2. Jumping 3. Pedestrian 1 4. Pedestrian 2 5. Pedestrian 3

6. Car 8. Volkswagen 9. Car Chase 10. Panda7. Motocross

Fig. 12. Snapshots from the introduced TLD dataset.

22%, other approaches range between 13-15%. The sequences
have been processed with identical parameters with exception
for sequence Panda, where any positive example added to the
model had been augmented with mirrored version.

CONCLUSIONS

In this paper, we studied the problem of tracking of an
unknown object in a video stream, where the object changes
appearance frequently moves in and out of the camera view.
We designed a new framework that decomposes the tasks into
three components: tracking, learning and detection. The learn-
ing component was analyzed in detail. We have demonstrated
that an object detector can be trained from a single example
and an unlabeled video stream using the following strategy:
(i) evaluate the detector, (ii) estimate its errors by a pair of
experts, and (iii) update the classifier. Each expert is focused
on identification of particular type of the classifier error and
is allowed to make errors itself. The stability of the learning
is achieved by designing experts that mutually compensate
their errors. The theoretical contribution is the formalization
of this process as a discrete dynamical system, which allowed
us to specify conditions, under which the learning process
guarantees improvement of the classifier. We demonstrated
that the experts can exploit spatio-temporal relationships in
the video. A real-time implementation of the framework has

been described in detail. And an extensive set of experiments
was performed. Superiority of our approach with respect to
the closest competitors was clearly demonstrated. The code
of the algorithm as well as the TLD dataset has been made
available online2.

LIMITATIONS AND FUTURE WORK
There are a number of challenges that have to be addressed in
order to get more reliable and general system based on TLD.
For instance, TLD does not perform well in case of full out-
of-plane rotation. In that case the, the Median-Flow tracker
drifts away from the target and can be re-initialized only
if the object reappears with appearance seen/learned before.
Current implementation of TLD trains only the detector and
the tracker stay fixed. As a result the tracker makes always
the same errors. An interesting extension would be to train
also the tracking component. TLD currently tracks a single
object. Multi-target tracking opens interesting questions how
to jointly train the models and share features in order to
scale. Current version does not perform well for articulated
objects such as pedestrians. In case of restricted scenarios,
e.g. static camera, an interesting extension of TLD would be
to include background subtraction in order to improve the
tracking capabilities.

2. http://cmp.felk.cvut.cz/tld

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 13

Sequence Frames OB [29] SB [31] BS [69] MIL [30] CoGD [33] TLD
1. David 761 0.41 / 0.29 / 0.34 0.35 / 0.35 / 0.35 0.32 / 0.24 / 0.28 0.15 / 0.15 / 0.15 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
2. Jumping 313 0.47 / 0.05 / 0.09 0.25 / 0.13 / 0.17 0.17 / 0.14 / 0.15 1.00 / 1.00 / 1.00 1.00 / 0.99 / 1.00 1.00 / 1.00 / 1.00
3. Pedestrian 1 140 0.61 / 0.14 / 0.23 0.48 / 0.33 / 0.39 0.29 / 0.10 / 0.15 0.69 / 0.69 / 0.69 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
4. Pedestrian 2 338 0.77 / 0.12 / 0.21 0.85 / 0.71 / 0.77 1.00 / 0.02 / 0.04 0.10 / 0.12 / 0.11 0.72 / 0.92 / 0.81 0.89 / 0.92 / 0.91
5. Pedestrian 3 184 1.00 / 0.33 / 0.49 0.41 / 0.33 / 0.36 0.92 / 0.46 / 0.62 0.69 / 0.81 / 0.75 0.85 / 1.00 / 0.92 0.99 / 1.00 / 0.99
6. Car 945 0.94 / 0.59 / 0.73 1.00 / 0.67 / 0.80 0.99 / 0.56 / 0.72 0.23 / 0.25 / 0.24 0.95 / 0.96 / 0.96 0.92 / 0.97 / 0.94
7. Motocross 2665 0.33 / 0.00 / 0.01 0.13 / 0.03 / 0.05 0.14 / 0.00 / 0.00 0.05 / 0.02 / 0.03 0.93 / 0.30 / 0.45 0.89 / 0.77 / 0.83
8. Volkswagen 8576 0.39 / 0.02 / 0.04 0.04 / 0.04 / 0.04 0.02 / 0.01 / 0.01 0.42 / 0.04 / 0.07 0.79 / 0.06 / 0.11 0.80 / 0.96 / 0.87
9. Carchase 9928 0.79 / 0.03 / 0.06 0.80 / 0.04 / 0.09 0.52 / 0.12 / 0.19 0.62 / 0.04 / 0.07 0.95 / 0.04 / 0.08 0.86 / 0.70 / 0.77
10. Panda 3000 0.95 / 0.35 / 0.51 1.00 / 0.17 / 0.29 0.99 / 0.17 / 0.30 0.36 / 0.40 / 0.38 0.12 / 0.12 / 0.12 0.58 / 0.63 / 0.60
mean 26850 0.62 / 0.09 / 0.13 0.50 / 0.10 / 0.14 0.39 / 0.10 / 0.15 0.44 / 0.11 / 0.13 0.80 / 0.18 / 0.22 0.82 / 0.81 / 0.81

TABLE 6
Performance evaluation on TLD dataset measured by Precision/Recall/F-measure. Bold numbers indicate the best

score. TLD1.0 scored best in 9/10 sequences.

ACKNOWLEDGMENTS
The research was supported by the UK EPSRC EP/F0034 20/1
and BBC R&D grants (KM and ZK) and by EC project FP7-
ICT-270138 Darwin and Czech Science Foundation project
GACR P103/10/1585 (JM).

REFERENCES
[1] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with

co-training,” Conference on Computational Learning Theory, p. 100,
1998.

[2] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” International Joint Conference on
Artificial Intelligence, vol. 81, pp. 674–679, 1981.

[3] J. Shi and C. Tomasi, “Good features to track,” Conference on Computer
Vision and Pattern Recognition, 1994.

[4] P. Sand and S. Teller, “Particle video: Long-range motion estimation
using point trajectories,” International Journal of Computer Vision,
vol. 80, no. 1, pp. 72–91, 2008.

[5] L. Wang, W. Hu, and T. Tan, “Recent developments in human motion
analysis,” Pattern Recognition, vol. 36, no. 3, pp. 585–601, 2003.

[6] D. Ramanan, D. A. Forsyth, and A. Zisserman, “Tracking people by
learning their appearance,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 65–81, 2007.

[7] P. Buehler, M. Everingham, D. P. Huttenlocher, and A. Zisserman,
“Long term arm and hand tracking for continuous sign language TV
broadcasts,” British Machine Vision Conference, 2008.

[8] S. Birchfield, “Elliptical head tracking using intensity gradients and color
histograms,” Conference on Computer Vision and Pattern Recognition,
1998.

[9] M. Isard and A. Blake, “CONDENSATION - Conditional Density
Propagation for Visual Tracking,” International Journal of Computer
Vision, vol. 29, no. 1, pp. 5–28, 1998.

[10] C. Bibby and I. Reid, “Robust real-time visual tracking using pixel-wise
posteriors,” European Conference on Computer Vision, 2008.

[11] C. Bibby and I. Reid, “Real-time Tracking of Multiple Occluding
Objects using Level Sets,” Computer Vision and Pattern Recognition,
2010.

[12] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial
intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[13] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” European
Conference on Computer Vision, pp. 25–36, 2004.

[14] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of Optical
Flow Techniques,” International Journal of Computer Vision, vol. 12,
no. 1, pp. 43–77, 1994.

[15] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Track-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 5, pp. 564–577, 2003.

[16] I. Matthews, T. Ishikawa, and S. Baker, “The Template Update Prob-
lem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 6, pp. 810–815, 2004.

[17] N. Dowson and R. Bowden, “Simultaneous Modeling and Tracking
(SMAT) of Feature Sets,” Conference on Computer Vision and Pattern
Recognition, 2005.

[18] A. Rahimi, L. P. Morency, and T. Darrell, “Reducing drift in differential
tracking,” Computer Vision and Image Understanding, vol. 109, no. 2,
pp. 97–111, 2008.

[19] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust Online
Appearance Models for Visual Tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1296–1311, 2003.

[20] A. Adam, E. Rivlin, and I. Shimshoni, “Robust Fragments-based Track-
ing using the Integral Histogram,” Conference on Computer Vision and
Pattern Recognition, pp. 798–805, 2006.

[21] M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,” Inter-
national Journal of Computer Vision, vol. 26, no. 1, pp. 63–84, 1998.

[22] D. Ross, J. Lim, R. Lin, and M. Yang, “Incremental Learning for Robust
Visual Tracking,” International Journal of Computer Vision, vol. 77,
pp. 125–141, Aug. 2007.

[23] J. Kwon and K. M. Lee, “Visual Tracking Decomposition,” Conference
on Computer Vision and Pattern Recognition, 2010.

[24] M. Yang, Y. Wu, and G. Hua, “Context-aware visual tracking.,” IEEE
transactions on pattern analysis and machine intelligence, vol. 31,
pp. 1195–209, July 2009.

[25] H. Grabner, J. Matas, L. Van Gool, and P. Cattin, “Tracking the Invisible:
Learning Where the Object Might be,” Conference on Computer Vision
and Pattern Recognition, 2010.

[26] S. Avidan, “Support Vector Tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1064–1072, 2004.

[27] R. Collins, Y. Liu, and M. Leordeanu, “Online Selection of Discrimi-
native Tracking Features,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 10, pp. 1631–1643, 2005.

[28] S. Avidan, “Ensemble Tracking,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 2, pp. 261–271, 2007.

[29] H. Grabner and H. Bischof, “On-line boosting and vision,” Conference
on Computer Vision and Pattern Recognition, 2006.

[30] B. Babenko, M.-H. Yang, and S. Belongie, “Visual Tracking with
Online Multiple Instance Learning,” Conference on Computer Vision
and Pattern Recognition, 2009.

[31] H. Grabner, C. Leistner, and H. Bischof, “Semi-Supervised On-line
Boosting for Robust Tracking,” European Conference on Computer
Vision, 2008.

[32] F. Tang, S. Brennan, Q. Zhao, H. Tao, and U. C. Santa Cruz, “Co-
tracking using semi-supervised support vector machines,” International
Conference on Computer Vision, pp. 1–8, 2007.

[33] Q. Yu, T. B. Dinh, and G. Medioni, “Online tracking and reacquisi-
tion using co-trained generative and discriminative trackers,” European
Conference on Computer Vision, 2008.

[34] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[35] P. Viola and M. Jones, “Rapid object detection using a boosted cas-
cade of simple features,” Conference on Computer Vision and Pattern
Recognition, 2001.

[36] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time
keypoint recognition,” Conference on Computer Vision and Pattern
Recognition, 2005.

[37] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3d tracking using
online and offline information,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 10, p. 1385, 2004.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010 14

[38] S. Taylor and T. Drummond, “Multiple target localisation at over 100
fps,” British Machine Vision Conference, 2009.

[39] J. Pilet and H. Saito, “Virtually augmenting hundreds of real pictures: An
approach based on learning, retrieval, and tracking,” 2010 IEEE Virtual
Reality Conference (VR), pp. 71–78, Mar. 2010.

[40] S. Obdrzalek and J. Matas, “Sub-linear indexing for large scale object
recognition,” British Machine Vision Conference, vol. 1, pp. 1–10, 2005.

[41] S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit, “Real-
time learning of accurate patch rectification,” Conference on Computer
Vision and Pattern Recognition, 2009.

[42] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning.
Cambridge, MA: MIT Press, 2006.

[43] X. Zhu and A. B. Goldberg, Introduction to semi-supervised learning.
Morgan & Claypool Publishers, 2009.

[44] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, “Text clas-
sification from labeled and unlabeled documents using EM,” Machine
Learning, vol. 39, no. 2, pp. 103–134, 2000.

[45] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” Conference on Computer Vision
and Pattern Recognition, vol. 2, 2003.

[46] C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised
self-training of object detection models,” Workshop on Application of
Computer Vision, 2005.

[47] N. Poh, R. Wong, J. Kittler, and F. Roli, “Challenges and Research
Directions for Adaptive Biometric Recognition Systems,” Advances in
Biometrics, 2009.

[48] A. Levin, P. Viola, and Y. Freund, “Unsupervised improvement of visual
detectors using co-training,” International Conference on Computer
Vision, 2003.

[49] O. Javed, S. Ali, and M. Shah, “Online detection and classification of
moving objects using progressively improving detectors,” Conference on
Computer Vision and Pattern Recognition, 2005.

[50] O. Williams, A. Blake, and R. Cipolla, “Sparse bayesian learning for
efficient visual tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 8, pp. 1292–1304, 2005.

[51] M. Isard and A. Blake, “CONDENSATION Conditional Density
Propagation for Visual Tracking,” International Journal of Computer
Vision, vol. 29, no. 1, pp. 5–28, 1998.

[52] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, “Tracking in
Low Frame Rate Video: A Cascade Particle Filter with Discriminative
Observers of Different Lifespans,” Conference on Computer Vision and
Pattern Recognition, 2007.

[53] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G. Lowe,
“A boosted particle filter: Multitarget detection and tracking,” European
Conference on Computer Vision, 2004.

[54] B. Leibe, K. Schindler, and L. Van Gool, “Coupled Detection and
Trajectory Estimation for Multi-Object Tracking,” 2007 IEEE 11th
International Conference on Computer Vision, pp. 1–8, Oct. 2007.

[55] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. V.
Gool, “Robust Tracking-by-Detection using a Detector Confidence Par-
ticle Filter,” International Conference on Computer Vision, 2009.

[56] K. K. Sung and T. Poggio, “Example-based learning for view-based
human face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, pp. 39–51, 1998.

[57] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control.
Prentice Hall Englewood Cliffs, NJ, 1996.

[58] K. Ogata, Modern control engineering. Prentice Hall, 2009.
[59] Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N Learning: Bootstrapping

Binary Classifiers by Structural Constraints,” Conference on Computer
Vision and Pattern Recognition, 2010.

[60] V. Lepetit and P. Fua, “Keypoint recognition using randomized trees.,”
IEEE transactions on pattern analysis and machine intelligence, vol. 28,
pp. 1465–79, Sept. 2006.

[61] M. Ozuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in
Ten Lines of Code,” Conference on Computer Vision and Pattern
Recognition, 2007.

[62] M. Calonder, V. Lepetit, and P. Fua, “BRIEF : Binary Robust Indepen-
dent Elementary Features,” European Conference on Computer Vision,
2010.

[63] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[64] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-Backward Error:
Automatic Detection of Tracking Failures,” International Conference on
Pattern Recognition, pp. 23–26, 2010.

[65] J. Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the algorithm,” Technical Report, Intel Micro-
processor Research Labs, 1999.

[66] Z. Kalal, J. Matas, and K. Mikolajczyk, “Online learning of robust object
detectors during unstable tracking,” On-line Learning for Computer
Vision Workshop, 2009.

[67] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “PROST:
Parallel Robust Online Simple Tracking,” Conference on Computer
Vision and Pattern Recognition, 2010.

[68] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-
line Random Forests,” Online Learning for Computer Vision Workshop,
2009.

[69] S. Stalder, H. Grabner, and L. V. Gool, “Beyond semi-supervised
tracking: Tracking should be as simple as detection, but not simpler than
recognition,” 2009 IEEE 12th International Conference on Computer
Vision Workshops, ICCV Workshops, pp. 1409–1416, Sept. 2009.

Zdenek Kalal received the MSc degree in Tech-
nical Cybernetics from the Czech Technical Uni-
versity, Prague, in 2007. In 2011, he defended
his PhD at the Centre of Vision, Speech and
Signal Processing, University of Surrey, UK. He
is running a start-up company (tldvision.com)
with the goal to bring the TLD technology into
industrial applications.

Krystian Mikolajczyk is a Senior Lecturer in
Robot Vision at the Centre for Vision, Speech
and Signal processing at the University of Sur-
rey, UK. He did his PhD at INRIA Grenoble
(France) on invariant interest points and then
held post-doc positions at INRIA, University of
Oxford (UK) and Technical University of Darm-
stadt (Germany), working primarily on image
recognition problems. His main scientic con-
tributions are in the domain of invariant im-
age descriptors for matching and recognition.

He currently leads a group of PhD students and post-docs focused
on visual recognition problems including issues like image match-
ing, categorization, retrieval as well as object and action recogni-
tion. http://personal.ee.surrey.ac.uk/Personal/K.Mikolajczyk Centre for
Vision, Speech and Signal Processing, University of Surrey, UK.

Jiri Matas received the MSc degree in cyber-
netics (with honors) from the Czech Technical
University in 1987 and the PhD degree from
the University of Surrey, UK, in 1995. He has
published more than 150 papers in refereed jour-
nals and conferences. His publications have ap-
proximately 4000 citations in the ISI Thomson-
Reuters Science Citation Index and 10000 in
Google scholar. His h-index is 21 (ISI) and 34
(Google scholar) respectively.

He received the best paper prize at the British Machine Vision Confer-
ences in 2002 and 2005 and at the Asian Conference on Computer Vi-
sion in 2007. J. Matas has served in various roles at major international
conferences (e.g. ICCV, CVPR, ICPR, NIPS, ECCV), co- chairing ECCV
2004 and CVPR 2007. He is on the editorial board of IJCV and IEEE T.
PAMI. His research interests include object recognition, image retrieval,
tracking, sequential pattern recognition, invariant feature detection, and
Hough Transform and RANSAC-type optimization.

