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Abstract

In this paper we present a novel approach for temporal
alignment of reconstructed mesh sequences with non-rigid
surfaces to obtain a consistent representation. We propose a
hierarchical scheme for non-sequential matching of frames
across the sequence using shape similarity. This gives a tree
structure which represents the optimal path for alignment of
each frame in the sequence to minimize the change in shape.
Non-rigid alignment is performed by recursively traversing
the tree to align all frames. Non-sequential alignment re-
duces problems of drift or tracking failure which occur in
previous sequential frame-to-frame techniques. Compara-
tive evaluation on challenging 3D video sequences demon-
strates that the proposed approach produces a temporally
coherent representation with reduced error in shape and
correspondence.

1. Introduction
Capture of 3D video sequences is becoming widely

available using multiple camera reconstruction or real-time
active sensors. Recent work has focused on the capture
and reconstruction of people from multi-view camera set-
ups with visual reconstruction achieving results compara-
ble to laser scanning[12]. These approaches allow the cap-
ture of dynamic non-rigid free-form deformation including
cloth and hair. Non-rigid shape capture [5, 7, 16, 20] results
in an unstructured mesh sequence with changing connec-
tivity and geometry at each frame. Efficient representation,
rendering, editing and analysis of captured mesh sequences
requires temporal alignment and consistent mesh structure.

Recent research has focused on the problem of recon-
structing temporally consistent mesh sequences for people.
A number of approaches have been proposed for sequential
frame-to-frame non-rigid surface tracking based on corre-
spondence of appearance and geometric features. Starck et
al. [14] proposed a continuous surface tracking approach
based on geometry images. Aguiar et al [5] use SIFT fea-
tures and a patch based approach to constrain the deforma-

tion of a high-resolution mesh to match each frame in a se-
quence. A volumetric Laplacian scheme which minimizes
the change in volume is used to regularize the deformation.
The use of SIFT appearance features results in a sparse dis-
tribution across the surface with uniform regions such as
arms and legs commonly having insufficient features to con-
strain the deformation. Ahmed et al [1] attempt to increase
the number of SIFT correspondences using harmonic func-
tions to infer matches from surrounding sparse features. In
practice this may still result in insufficient frame-to-frame
feature correspondences to constrain the deformation.

Zaharescu et al. [21] introduced MeshHOG which ex-
tended SIFT appearance features to the 3D domain, taking
into account local geometric detail along with the photo-
metric information. Results demonstrate that this gives an
improved distribution of features across the surface provid-
ing sparse features matches in areas where there is insuffi-
cient variation in appearance for SIFT. Varanasi et al [19]
detect the extremities of the limbs for 3D video sequences
of people using the maxima of the geodesic integral. Ge-
ometric features commonly fail where there is a change in
the reconstructed surface topology. This commonly occurs
in 3D video of people where the arms are close to the body
or self-occlusion from the camera views results in phantom
volume protrusions of the reconstructed surface.

Cagniart et al [2, 3] introduce an approach based on iter-
ative closest point ICP registration of rigid surface patches
from frame-to-frame. A reconstructed frame from the se-
quence is used as a reference mesh avoiding the need for a
prior high-resolution surface scan [5]. Results on sequences
of complex free-form non-rigid surface motion demonstrate
that this approach, using purely geometric information, is
able to track surfaces undergoing relatively large non-rigid
deformations. Cagniart et al. [4] present a probabilistic
dense matching approach which introduces improved ro-
bustness to errors in the reconstructed surfaces. The use
of purely geometric features may fail if deformations are
too large for nearest point estimation and can result in drift
across the surface for uniform geometric regions. Results
of the non-sequential approach proposed in this paper are
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(a) Reconstructed 3D Video (Un-
structured mesh Sequence)

(b) Shape Similarity Tree (c) Pairwise Non-
rigid Alignment

(d) Temporally Consistent Mesh

Figure 1: Overview of our approach to non-sequential 3D video alignment

compared to Cagniart et al. [4] and show an improved ac-
curacy of surface fit.

The majority of previous approaches to obtaining con-
sistent mesh structure for 3D video sequences focus on
the problem of frame-to-frame non-rigid surface tracking.
Under large non-rigid deformations due to fast movement,
clothing or errors in surface reconstruction this approach
may fail and result in part of the sequence not being tracked.
The problem of non-rigid surface matching across large dif-
ferences in shape has recently been addressed. Starck et al.
[15] proposed an approach based on coarse-to-fine match-
ing using both appearance and geometric features with cor-
respondence optimisation performed using belief propaga-
tion. This achieves accurate matching between pairs of
frames exhibiting large deformations but is relatively inef-
ficient to solve. Tung et al. [18] perform surface matching
based on sparse geometric features and a geodesic mapping
which ensures a one-to-one matching across the surface.

In this paper we propose an alternative non-sequential
approach to alignment of 3D video sequences into a con-
sistent structure. Non-sequential alignment reduces the
amount of drift by aligning meshes across the sequence
based on their shape similarity rather than temporal or-
dering and overcomes the problem of sequential tracking
failure by aligning frames from all parts of the sequences.
The principal novelty of this approach is the extraction of
a hierarchical tree representation of a 3D video sequence
which represents the shortest path between frames in terms
of shape similarity. A Laplacian deformation framework,
similar to previous approaches [5, 2], is employed for non-
rigid pairwise mesh alignment which incorporates both ge-
ometric and photometric feature matching to reduce drift.
Other non-rigid alignment techniques could be used within
the proposed non-sequential matching framework. An
overview of the approach is presented in Figure 1. Results
demonstrate that non-sequential matching gives improved
accuracy of surface fit and reduces gross errors due to large
deformation or poor feature matching.

2. Hierarchical Shape Matching

In this section we introduce a hierarchical tree represen-
tation which defines the shortest path between a reference
mesh and all other meshes is the sequence. Shortest path is
defined in terms of shape similarity between frames. The
branches of the tree provide shorter non-rigid alignment
paths in shape similarity space which reduces the accumu-
lation of error and localizes gross errors to a single branch.

2.1. Shape Histograms

For the purpose of shape matching between frames of
the sequence we use shape histogram comparison which
has previously been shown to give good performance for
3D video sequences of people[8, 9]. The 3D space of the
mesh is decomposed into a number of bins giving a spa-
cial representation of the frame. The shape histogram is
constructed using a spherical coordinate system to partition
the space (r, φ, θ) around the center of mass. In our imple-
mentation we select the number of bins N = NrNφNθ =
5× 10× 20 = 1000 within a fixed size sphere of sufficient
radius to encompass all frames of the sequence.

The histogram H(Fs) counts the volumetric occupancy
of the mesh Fs for the sth frame in the sequence. To ensure
that the similarity measure is invariant to rotation we test
for maximum similarity over all rotations in φ. This can
be achieved efficiently by shifting a fine histogram with 1o

bins and re-binning to the required resolution.

For a sequence S of meshes (F1, ..., Fn) with corre-
sponding shape histograms (H1, ...,Hn) similarity is com-
puted with the L2 distance. For source mesh Fs and target
frame Ft the minimum L2 distance corresponding to maxi-
mum similarity D(Fs, Ft) for each 1o shift d = (1, .., 360)
is given by:

D(Fs, Ft) = min
d

N∑
i=1

‖Hs(i)−Ht(i+ d)‖2 (1)



2.2. Shape Similarity Tree

Errors in non-rigid mesh alignment increase as the differ-
ence in shape between meshes increases. We therefore pro-
pose a tree structure representing all frames in the sequence
based on their relative shape similarity according to equa-
tion 1. This representation reduces the number and size of
the steps in the pairwise non-rigid mesh alignment. Figure
2 illustrates a simple shape similarity tree for a sequence of
meshes. First a single frame is selected as a reference mesh
from the sequence Fref based on quality of reconstruction.
The shape similarity tree is then constructed to represent the
shortest path to each frame from the reference mesh such
that the pairwise similarity is less than a maximum distance
tmax (minimum similarity). This constraint avoids large de-
formations in the pairwise non-rigid alignment. The max-
imum distance threshold could be computed automatically
by evaluating the maximum of the minimum for each row in
the shape similarity matrix D(s, t). In practice throughout
this paper we have taken a fixed threshold of tmax = 0.001.

Given a sequence S comprising n meshes (F1, ..., Fn)
we build a fully connected graph G(V,E) with vertices
V = (F1, ..., Fn) representing each mesh. Edges (i, j) of
the graph are weighted according to the similarity measure-
ment D(Fi, Fj). The minimum spanning tree T for graph
G with root Fref subject to the constraint D(Fi, Fj) < tmax
then represents the minimum path length between the refer-
ence mesh and frames in the sequence. Isolated frames with
large deformations to all other frames which do not satisfy
the maximum distance constraint are added to the tree to
give the minimum path length.

The resulting hierarchy defines the path Pmin =
((Fref , Fi), ..., (Fj , Fk)) as a set of edges connecting the
reference mesh Fref and each mesh in the sequence Fk
which minimizes the sum of differences in shape:

Pmin = arg min
P

 ∑
∀ (i,j)∈P

D(Fi, Fj)


subject to D (Fi, Fj) < tmax (2)

where P ∈ P the set of all possible paths. We construct this
tree T with the following algorithm:

1. Fs = Fref

2. ∀Ft /∈ T select children of Fs such that D(Fs, Ft) <
tmax

3. For all children of Fs repeat from step 1

4. ∀Ft /∈ T where D(Fs, Ft) > tmax ∀s select parent
with min D(Fs, Ft)

This tree defines the shortest paths of deformation re-
quired to align every frame of the sequence for a given start-
ing frame Fref and matching threshold tmax. The mesh at
the root of the tree is deformed along all of it’s branches
using a pairwise non-rigid alignment approach described in
section 3.

Figure 2: Tree structure of shape matches representing a
reconstructed mesh sequence

3. Pairwise Non-rigid Alignment

In this section we introduce a non-rigid pairwise mesh
alignment algorithm which uses a coarse-to-fine approach
to combine both geometric and photometric matching in
a Laplacian mesh deformation framework. This builds on
previous work using Laplacian mesh deformation for sur-
face matching [5, 3]. A volumetric Laplacian similar to
[5] with soft matching constraints is initially used to allow
large deformations with robustness to correspondence er-
rors. A surface Laplacian is then used for refinement to
allow a closer fit to the target mesh. Rigidity constraints are
also included to give improved robustness to large deforma-
tions. In practice, the use of a combination of photometric
and geometric features together with volumetric and surface
Laplacians has been found to give improved reliability and
accuracy of non-rigid alignment.

3.1. Stage 1 - Initial Deformation

An initial alignment between a source Fs and target Ft
mesh is estimated using a volumetric deformation technique
described in section 4.2. To constrain deformation corre-
spondences are generated between frames using a combina-
tion of SIFT [11] and geometric matching [2].



3.1.1 Appearance Feature Matching

SIFT appearance features are computed per camera for each
frame of the original video and subsequently projected into
3D. SIFT feature matching is selected over the mesh based
variant MeshHOG [21] since it allows for matching from
one camera to multiple cameras. This was found to produce
a larger number of feature matches. SIFT matches are fil-
tered using a spectral technique[10] based on their relative
distance in the source and target frames.

3.1.2 Geometric Feature Matching

Appearance features alone can leave texture-less areas of
the mesh or thin parts unconstrained. To combat this a
sparse set of geometric features are created evenly dis-
tributed on the mesh surface. Geometric features are created
using an adaption of Cagniart et al [2] based on ICP fitting
of rigid surface patches. Their approach involves separat-
ing the source mesh into a number of surface patches and
using a variation of the ICP algorithm to fit those patches
to the target mesh. The centers of the surface patches are
selected as correspondences. The key difference of this ap-
proach to traditional ICP is in the selection of target near-
est points. The targets for each vertex are selected by first
looking at the target mesh and assigning each target vertex
a closest compatible point in the source mesh. The final tar-
get is then computed as a weighted combination according
to the dot product of the motion vector and vertex normal.

3.1.3 Feature Selection

Feature selection is performed to obtain a sparse set of geo-
metric and appearance features which are distributed evenly
over the surface. The surface is subdivided into patches of
equal size based on geodesic distance and a single feature
correspondence is selected for each patch, Figure 3. Each
SIFT or geometric feature Si has associated vertex vi from
the source mesh and a target position ti. For each patch we
select the correspondence whose direction of motion ti−vi
is most co-linear with the normal of its associated vertex vi
[5]. Patches which have no associated correspondences are
constrained to move rigidly based on the location of adja-
cent patches using the Laplacian deformation framework.

Combination of SIFT and geometric features together
with rigidity constraints on unconstrained patches reduce
the drift in pairwise matching over successive frames as il-
lustrated in Figure 4. Appearance features allow areas of
high texture with little shape information to be accurately
aligned, indicated by the waist band which is distorted if
only geometric features are used.

Figure 3: Patches generated on a tetrahedral mesh and se-
lected frame to frame correspondences

Figure 4: Comparison of SIFT and geometric information
(a) with geometric information alone (b)

3.2. Stage 2 - Iterative Surface Fitting

In the second stage of our algorithm we refine the ini-
tial surface alignment from stage 1 to accurately match the
target mesh. The following steps are iterated:

1. Double the number of geodesic patches

2. Perform the ICP variant on these patches

3. Deform the source mesh with surface Laplacian defor-
mation

With each iteration the size of the patches is decreased
allowing a coarse-to-fine matching with increasing density
of correspondences. As the patches decrease in size each
one contains significantly less shape information. It is there-
fore essential to get a close initial fit before increasing the
number of patches otherwise drift across the surface will oc-
cur. Correspondences are selected from the set of geometric



and appearance features as in stage 1. In Stage 2 we use a
surface based Laplacian deformation approach which pre-
serves surface area rather than mesh volume. This allows
the surface to expand and contract to fit more exactly the
shape of the target data. The advantage of this is demon-
strated when loose clothing creates a variation in volume
between consecutive frames.

3.3. Stage 3 - Dense Fitting

Finally, to achieve the closest possible surface match
we attempt to find a target for ever vertex of the source
frame. Closest point correspondences for every vertex are
estimated using the target to source approach taken in the
ICP variant. The weighted combination of possible targets
provides the target location. This step allows accurate re-
covery of surface detail.

4. Laplacian Deformation
All the deformation techniques we present in this paper

are variations of the Laplacian mesh editing paradigm [13].
Laplacian deformation involves fixing a number of vertex
locations and solving for the others by fitting the Laplacian
(differential coordinates) of the new geometry to the differ-
ential coordinates of the original mesh:

Lx = δ (3)

where L is the Laplacian operator matrix, x is a vector of
the mesh’s vertices stacked (x1, ..., xn, y1, ..., yn, z1, ..., zn)
and δ is the differential coordinates of mesh.

4.1. Surface Laplacian

The Laplacian operator matrix is defined on the connec-
tivity of the mesh and is given by:

L = GTDG (4)

where D is the diagonal degree matrix which weights the
system according to the cotangent weights [6]. G is the gra-
dient operator matrix which contains the gradients of the
triangles shape functions φ using the faces normal n for ori-
entation.

Gi = (5φi,5φj ,5φk)

=

 (P1 − P3)
T

(P2 − P3)
T

nT

−1  1 0 −1
0 1 −1
0 0 0

 (5)

The differential coordinates of a manifold δ are given by
multiplying the Laplacian operator L by the vector of the
meshes vertices as in 3. Computing deformed vertex loca-
tions, xu, involves solving equation 3 factored according to
the constrained vertex locations xk:

xu = arg min
xu

||Lxu − (δ + c)|| (6)

where c = Lxk is the result of multiplying the Laplacian
opperator L by the vector of known constrained vertex loca-
tions xk. This gives a system in which constrained vertices
provide hard constraints to deformation. Since our con-
straints are likely to be subject to some error to maintain
smooth deformation we use an energy based formulation to
introduce soft constraints [2].

xu = arg min
xu

||Lxu − δ||2 + ||Wc (xu − xk)||2 (7)

Solving this system directly leads to the well known
problem with linear interpolation of large rotations. Instead
we adopt an iterative approach. Equation 7 is solved repeat-
edly whilst updating the differential coordinates at each it-
eration. At each stage rotations are extracted for each facet
of the mesh and applied to the corresponding facet in the
source mesh. The differential coordinates are then updated
accordingly[13].

4.2. Volumetric Laplacian

The Delaunay tetrahedralization of a triangular manifold
gives a mesh with volumetric elements. Using this mesh it
is possible to define a Laplacian weighted by the volumes
of the tetrahedral elements [17]. Here the shape functions
from which the gradient operator matrix G is defined are
based on the tetrahedral elements of the mesh.

Gi = (5φ1,5φ2,5φ3,5φ4)

=

 (P1 − P4)
T

(P2 − P4)
T

(P3 − P4)
T


−1  1 0 0 −1

0 1 0 −1
0 0 1 −1

 (8)

The Laplacian operator is again defined as in 3. Here D
is a diagonal weight matrix containing the volumes of the
respective tetrahedral elements. The volumetric approach is
particularly useful in maintaining the volume and shape of
a manifold under large deformation and preventing collapse
as used in the first stage of non-rigid alignment.

A section we wish to keep rigid under deformation is de-
fined as a selection of neighboring triangles. On each itera-
tion of the solver the differential coordinates of all members
of a rigid section are updated according to the average ro-
tation. In this way a section is unable to bend but can still
orientate according to positional constraints.

5. Results and Evaluation
Hierarchical non-rigid matching is applied to a publicly

available database of 3D video sequences [16] which in-
cludes fast challenging sequences of a brake dancer for



Figure 5: Top: Original reconstructed 3D video sequence,
Bottom: Sequence with temporal correspondence. This
technique works particularly well on cyclic motions

evaluation. We compare the results on our non-sequential
alignment algorithms to results previously reported on this
data using a sequential approach [4]. There are two key as-
pects to testing the quality of a temporally consistent surface
alignment technique. The results must accurately represent
the target shape and each vertex must maintain accurate cor-
respondence on the surface. The quality of the fit to the tar-
get data can be demonstrated quantitatively with the Haus-
dorff and RMS error measures. The degree to which ver-
tices maintain correspondence can be assessed qualitatively
by texturing the first frame of the sequence and transferring
the UV map to the remainder of the sequence by exploiting
the temporally consistent representation.

5.1. Qualitative

Figure 6 compares temporally consistent data produced
using our shape matching approach to the original recon-
structed data. The shapes of the meshes produced are vi-
sually identical. By texturing the first frame on these se-
quences and projecting the UV map through the tempo-
rally consistent output of our algorithm we observe that the
vertices maintain alignment indicated by texture remain-
ing locked to the surface. This is particularly noticeable
in cyclic motion such as the walk sequence, Figure 5. In
such sequences shapes are commonly repeated at several
frames, non-sequential matching is performed across rela-
tively short sequences of frames reducing drift compared to
a sequential approach.

5.2. Quantitative

The Hausdorff distance evaluates the maximum devia-
tion of a vertex on the source mesh from the surface of the
target data to identify gross errors. Root mean square error

gives an average distance of the vertices to the surface of
the target data indicating the accuracy of shape representa-
tion. It is important to consider these metrics together with
visual information as in cases where reconstruction errors
are present in the frame and are correctly avoided by the
algorithm large distances can occur.

Figure 7 shows plots of RMS error for multiple 3D video
sequences[16]. In all cases we present a very close fit to the
target data with the RMS error averaging∼10mm across all
sequences. The maximum Hausdorff distance is ∼120mm
and only occurs in a few frames. Reconstruction error is
of the order of ∼10mm so this level of rms error indicates
a good fit. Frames often contain large errors in the recon-
struction itself leading to an exaggerated Hausdorff distance
and bias in RMS Error. Figure 7 also compares our results
to a state-of-the-art sequential alignment approach[4]. Re-
sults indicate comparable or improved fitting accuracy for
the proposed non-sequential alignment approach.

5.3. Recovery From Error

Another important consideration for any sequential
tracking technique is recovery from errors. An advantage
of the proposed non-sequential tree based approach to non-
rigid surface alignment is that errors are only propagated lo-
cally along the branches. Misalignment at an intermediate
frames will not cause the remainder of the sequence to fail.
This is illustrated in Figure 8 where the left hand and collar
of the shirt have incorrect alignment in one frame but are
correctly aligned in subsequent frames. In practice, align-
ment failure due to erroneous features or reconstruction er-
rors could be corrected by removing the misaligned frame
and interpolating. This correction is not performed in any
of the results presented.

(a) t (b) t + 1

Figure 8: Recovery from error. The left hands geometry
has degraded and the texture around the collar has started to
drift (left) however in the next frame it has recovered (right)

6. Conclusions
A non-sequential approach to non-rigid alignment of

mesh sequences has been presented. This approach uses a
shape similarity tree to hierarchically match frames across
the sequence minimizing the change in shape between



(a) Free Sequence

(b) Head Sequence

Figure 6: Top: Original reconstructed 3D video sequence, Bottom: Sequence with temporal correspondence. UV texture
maps are created for the first frame and transfered to subsequent frames exploiting temporal consistency

meshes for pairwise non-rigid alignment. Pairwise align-
ment is performed using a coarse-to-fine Laplacian defor-
mation approach which combines photometric and geomet-
ric features to improve reliability. The non-sequential align-
ment approach could also be used with other pairwise non-
rigid alignment techniques. The principal advantages of
the proposed non-sequential approach are to reduce drift
inherent in sequential frame-to-frame alignment due to ac-
cumulation of errors and to allow alignment across com-
plete sequences even if an intermediate frame is misaligned.
There is no visible jitter between non-sequentially recon-
structed frames where branches of the tree come back to-
gether. Evaluation on a public database of 3D video se-
quences containing rapid non-rigid movement demonstrates
that the non-sequential approach improves the accuracy of

non-rigid alignment and shape representation compared to a
state-of-the-art sequential approach. The alignment is suffi-
ciently accurate to transfer a texture map across a sequence
maintaining a stable alignment on the surface. Addition-
ally shape matching allows reconstruction across multiple
sequences and thus temporal alignment of entire databases.
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