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Abstract

Image-based modelling allows the reconstruction of highly realistic digital models from real-world objects. This paper presents a
model-based approach to recover animated models of people from multiple view video images. Two contributions are made, a multiple
resolution model-based framework is introduced that combines multiple visual cues in reconstruction. Second, a novel mesh parameteri-
sation is presented to preserve the vertex parameterisation in the model for animation. A prior humanoid surface model is first decom-
posed into multiple levels of detail and represented as a hierarchical deformable model for image fitting. A novel mesh parameterisation
is presented that allows propagation of deformation in the model hierarchy and regularisation of surface deformation to preserve vertex
parameterisation and animation structure. The hierarchical model is then used to fuse multiple shape cues from silhouette, stereo and
sparse feature data in a coarse-to-fine strategy to recover a model that reproduces the appearance in the images. The framework is com-
pared to physics-based deformable surface fitting at a single resolution, demonstrating an improved reconstruction accuracy against
ground-truth data with a reduced model distortion. Results demonstrate realistic modelling of real people with accurate shape and
appearance while preserving model structure for use in animation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we address model-based reconstruction of
people using a generic model of human shape and kine-
matic structure. A novel multiple resolution model-fitting
technique is presented that combines multiple shape
cues from camera images for coarse-to-fine model-based
reconstruction with preservation of animation structure.
Previous work concentrates on reconstructing dynamic
shape to render the appearance of people from a novel
viewpoint, termed free-viewpoint video [1,2]. These tech-
niques have no prior scene structure to construct a consis-
tent representation that can be instrumented for animation
and synthesis of new content. Model-based scene recon-
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struction is a well-established approach [3–5] in which a
prior scene model is adapted to fit available shape data
and so provides a consistent structure that can be used
for synthesis. Previous model-fitting techniques have con-
strained the freedom in model deformation for robust
reconstruction by restricting the space of feasible shape
using a coarse input model or by restricting models to
closed surfaces. Techniques also allow the vertex structure
used in animation to be distorted in model deformation. In
this work, we introduce constraints to explicitly preserve
the mesh parameterisation in model deformation and pres-
ent a hierarchical model that decomposes the degrees of
freedom in model fitting for any prior high-resolution sur-
face mesh with no restriction on the surface triangulation
or topology. A structured representation is derived in
reconstruction that supports control of dynamics for the
synthesis of new animated content as illustrated in Fig. 1
as well as manipulation of viewpoint for free-viewpoint
rendering.
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Fig. 1. A model-based approach to multiple view reconstruction matches a prior surface model to multiple view images providing a structured scene
representation that allows novel content generation from the images.
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The paper is organised as follows. In Section 2, we
review related work. In Section 3, a multiple resolution
deformable model is presented for hierarchical data fitting.
In Section 4, a framework is presented for coarse-to-fine
model fitting to multiple shape cues for image-based recon-
struction. Multiple resolution coarse-to-fine model fitting is
then evaluated in Section 5 and applied to human shape
reconstruction from multiple views. The application of
model-based reconstruction for human animation synthesis
is finally demonstrated in Section 6 and the contributions
made in this work are summarised in Section 7.

2. Related work

Over the past decade there has been extensive research
in computer vision and graphics focused on modelling
the appearance and movement of real people. Approaches
to modelling include 3D scanning [6], reconstruction from
static images [7,8], multiple view images [4,9] and recon-
struction from multiple view video [1,10,11]. Kanade
et al. [1] and Moezzi et al. [10] introduced reconstruction
of sequences of people from multiple view video. Stereo
reconstruction [1,12] and shape from silhouette [10,13]
have been used to reconstruct 3D video sequences captured
from multiple camera systems and video-rate reconstruc-
tion has been achieved using an image-based scene repre-
sentation [2].

Previous work concentrates on reconstructing the
dynamic shape and rendering the appearance of people cap-
tured in multiple view video for free-viewpoint visualisation
or ‘‘Virtualized Reality’’ [1]. There is no assumption on the
observed scene topology or geometry enabling reconstruc-
tion of complex scenes potentially with multiple people.
There are however two limitations in this approach. First,
reconstruction using silhouette or stereo data alone suffers
from visual artefacts. Shape from silhouette requires a large
number of views to accurately reconstruct a scene and does
not necessarily reconstruct concavities. Stereo reconstruc-
tion fails in regions of uniform appearance and close to sil-
houette edges. Second, general surface reconstruction does
not provide a scene structure suitable for surface animation
to synthesise new dynamic content.
2.1. Object-centred scene reconstruction

An object-centred approach to scene reconstruction was
introduced by Fua and Leclerc [14,15] to combine multiple
visual cues in reconstruction using an initial surface mesh
for a scene and then optimising surface shape to match
both stereo and shading cues across multiple views. The
work demonstrates a refinement of the initial surface sub-
ject to the restriction that the model is initially close to
the solution for local optimisation. This surface-based
approach allows inference of occlusions and discontinuities
in camera images and the combination of different comple-
mentary visual cues in reconstruction. Object-centred
reconstruction has been used to improve reconstructed
scene models of people in model-enhanced stereo [13]
where an initial surface reconstruction is used to restrict
the search range to refine stereo correspondence. More
recent techniques have been presented to refine a robust
initial estimate of shape derived from silhouettes by
incorporating stereo and photo-consistency from multiple
views [11,16,17]. These techniques combine shape cues for
robust reconstruction without the requirement for a prior
surface model but provide no structure for animation
synthesis.

2.2. Functional modelling

Terzopoulos [18] introduced the concept of ‘functional
modelling’ in which a prior model is used to recover shape.
A model-based approach has a number of important
advantages: (i) the prior model can be designed for render-
ing and manipulation as a standard computer graphics
model; (ii) the model can be instrumented with a kinematic
structure for animation; (iii) a model provides prior shape
information to regularise multiple view reconstruction; and
(iv) reconstruction then provides a consistent structure for
all surfaces. This approach has been used widely to derive
animated models of the human face, see, for example,
[5,19]. Whole-body human shape reconstruction has been
presented previously to recover either static shape and
articulated motion [4,20] or dynamic shape [21] from image
silhouettes and from multiple shape cues [9].



J. Starck, A. Hilton / Computer Vision and Image Understanding 111 (2008) 179–194 181
Optimisation of a prior model to match image data was
first introduced in computer vision and computer graphics
by Terzopoulos et al. [3] who proposed a class of models
that describe the shape and motion of physically based
deformable surfaces. A significant body of literature exists
on shape reconstruction from 2D and 3D data using
deformable models. Montagnat et al. [22] review different
representations, McInerney and Terzopoulos [23] review
applications in medical image analysis and Nealen et al.
[24] review techniques for simulation of deformable objects
in computer graphics. Deformable contour models, known
as snakes [25], have been widely used for 2D image segmen-
tation. Deformable 3D surface models have been applied
for segmentation and shape recovery from 3D range data
[26] and 3D medical imaging data sets [27]. A variety of
shape representations have been explored to achieve this,
including surface meshes [28], particle systems [29], super-
quadrics [30] and implicit representations [31]. Surface evo-
lution has been realised through discretisation of the
deformation energy functions using finite differences [28]
and finite elements [32] or through level-set evolution of
an implicit surface [33].

Surface models used in animation have a highly struc-
tured mesh to give high-resolution representation in areas
of deformation and efficient representation in other areas.
Preserving this vertex parameterisation is important in
reconstructing models that can be used for animation. Pre-
vious formulations for deformable triangulated surfaces
make no explicit constraint on the vertex parameterisation
for model animation [22]. Mesh deformation has been con-
strained in model fitting by parameterising shape deforma-
tion [34,4], using global transformations [27,35], free-form
deformations (FFDs) [36] or by multiple resolution fitting
using subdivision of a base model [37,38]. These techniques
either restrict the feasible space of model deformations or
require a coarse prior model. Parameterised multiple reso-
lution models have also been constructed from high-resolu-
tion input models to approximate the original surface for
geometric processing [39]. Delingette [40] proposes the
use of a 2-simplex mesh that allows exact constraints to
be formulated to parameterise vertex positions. A 2-sim-
plex mesh is constructed as the dual of the polyhedral
graph defined by the triangulated surface, however the con-
straint can only be defined for a closed surface and pro-
vides no inverse operation to recover the original
triangulation exactly.

2.3. Contribution

In this paper, an image-based reconstruction framework
is presented that uses a prior surface model to provide a
domain to combine multiple shape cues for robust recon-
struction and to provide a model structure instrumented
for animation. A functional modelling approach is adopted
in which a prior triangulated surface is formulated as an
elastically deformable model, solving for the shape defor-
mation in data fitting by discretisation of the deformation
energy functional. The novelty in this framework is first the
introduction of a multiple resolution deformable model
that explicitly preserves the vertex parameterisation in the
triangulation without restriction on the shape or topology
of the prior model. A coarse-to-fine model optimisation
scheme is then presented to combine multiple cues from sil-
houette, stereo and feature data for multiple view human
shape reconstruction. Generation of human models from
camera images is evaluated and the application for model
animation is demonstrated.

3. Multiple resolution model

The goal of model-based reconstruction is to take a
prior triangulated surface, designed for animation and ren-
dering in a standard computer graphics pipeline, and adapt
the model to recover shape and image correspondence
from multiple camera views while preserving the vertex
parameterisation and animation structure of the model.
In this section, a technique is presented to construct a mul-
tiple resolution deformable model representation for a
prior high-resolution mesh. In Section 3.1, mesh simplifica-
tion is used to construct a hierarchy of meshes Ml from an
input mesh M. A novel mesh parameterisation technique is
introduced in Section 3.2 to enable propagation of shape
deformation between levels in this mesh hierarchy. A hier-
archical deformable model is then proposed in 3.3 for mul-
tiple resolution data fitting that preserves the vertex
parameterisation in the model and hence parameterisa-
tion-dependent model properties such as animation
weights.

3.1. Hierarchical mesh representation

Mesh simplification is used to construct a hierarchical
mesh representation. A triangulated surface M is defined
by a pair (V,K) where V is a finite set of points, the vertex
positions of M, and K a simplicial complex representing the
vertex connectivity defining the topology of M. For a trian-
gulated surface in R3 the simplicial complex is defined by
three simplices, the vertices {i} 2 K, edge connections
{i, j} 2 K, and face connections {i, j,k} 2 K in the mesh.
The goal of simplification is to construct a hierarchical rep-
resentation for M consisting of a set of progressively sim-
plified meshes Ml = (V,Kl) each using a subset of the
original vertex positions V defining the geometry of M.

Simplification is performed by iterative edge contraction
according to the process proposed by Hoppe et al. [41,42].
Each contraction operation deletes a single vertex and a
single edge from the complex K. Subset placement is used
to retain a single geometric representation V at all levels
of detail. To delete a vertex v1 and edge (v1,v2), all edge
and face connections in the 1-neighbourhood of v1 are
updated as v1 fi v2. All degenerate edges and faces in the
1-neighbourhood are then deleted.

Mesh simplification produces a new representation for
each edge contraction operation. A hierarchy of meshes



Fig. 3. Vertex parameterisation on an irregular triangular mesh. A local
reference frame is constructed from the three vertices i 0, j 0,k 0 forming the
1-connected face neighbourhood for a triangle. Vertex position is
parameterised as (a) the displacement along the frame normal and (b)
barycentric coordinates in the triangle i 0, j 0,k 0.
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Ml, also termed a Dobkin–Kirkpatrick (DK) hierarchy
[43], is constructed by successively removing a distinct set
of vertices in the mesh. For each edge contraction the ver-
tices in the 1-neighbourhood of the deleted vertex are
marked as fixed and only non-fixed vertices are scheduled
for removal. Once all non-adjacent distinct vertices are
deleted, the resulting complex can be recorded as a level
in the mesh hierarchy Kl. This process is repeated generat-
ing a hierarchy of complexes until either no more legal
operations can be performed or the mesh reaches a prede-
fined error tolerance with respect to the original surface. In
this work, surface reconstruction is addressed using both
an open mesh for the human face and a closed mesh for
the whole body, the hierarchical representation constructed
for these models is illustrated in Fig. 2.
3.2. Surface parameterisation in R3

The mesh hierarchy Ml provides a multiple resolution
representation for a triangulated surface M. In coarse-to-
fine model-fitting shape optimisation is scheduled at pro-
gressively finer resolutions. Optimisation of the vertex sub-
set i 2 Kl for a coarse mesh will however leave the
remaining vertices in the higher resolution representations
unaffected. In this section, a surface parameterisation is
introduced for an irregular triangulated mesh that enables
local reconstruction of position from the vertex neighbour-
hood and propagation of model deformation from coarse-
to-fine resolutions.

For an irregular triangular mesh, local parameterisation
of vertex position is inherently ambiguous. A vertex can
have two or more vertices in the 1-neighbourhood and it
is not possible to consistently define a local reference frame
in terms of the neighbourhood to express the vertex posi-
tion. For a closed surface, every face has a constant 3-con-
nected face neighbourhood as illustrated in Fig. 3. For a
Fig. 2. Hierarchical mesh representation constructed for a generic head and wh
and closed with irregular vertex connectivity.
vertex xi on a face, a consistent reference frame can be
defined using the three vertices i 0, j 0,k 0 forming the 1-con-
nected face neighbourhood. A translation and rotation
invariant local parameterisation is defined for a vertex
using a reference frame defined with respect to each face
that contains the vertex. Vertex position is parameterised
using barycentric coordinates (a,b) in the triangle formed
by i 0, j 0,k 0 plus a displacement d along the normal n̂. With
more than one reference frame a redundant parameterisa-
tion is obtained and vertex position can be averaged across
frames, corresponding to a least squares fit to each of the
corresponding parameterised positions

n̂ ¼
xj0 � xi0
� �

� xk0 � xi0ð Þ
kxj0 � xi0 kkxk0 � xi0 k

ð1Þ

xiði0; j0; k0Þ ¼ ð1� a� bÞxi0 þ axj0 þ bxk0 þ dn̂ ð2Þ

For an open mesh the face connectivity is not constant and
a face can have one, two or three connected faces in the 1-
neighbourhood. Boundary frames can be handled as a spe-
cial case as shown in Fig. 4. With only one or two faces in
the 1-neighbourhood a reference frame can still be con-
structed making use of the vertices on the face itself as well
ole-body model used for image-based reconstruction. The models are open



Fig. 4. Construction of a reference frame i 0, j 0,k 0 for a vertex i on a face in an open mesh with only (top) two or (bottom) one face in the 1-neighbourhood.
Missing vertices in the face neighbourhood are replaced with vertices of the central triangle to provide a complete reference frame i 0, j 0,k 0.

Fig. 5. Constant surface curvature can be obtained with different vertex
parameterisations. Constrained model fitting preserves both parameteri-
sation and curvature.
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as those forming the face neighbourhood to form the local
reference frame i 0, j 0,k 0.

Vertex parameterisation is constructed as part of the
mesh simplification process in creation of the hierarchical
model representation. At each vertex deletion the vertex
position is parameterised with respect to the local reference
frames. The parameterisation is thus defined in terms of the
remaining set of vertices in the mesh. In the final hierarchi-
cal representation the vertex deletion order can be tra-
versed in reverse to progressively reconstruct vertex
positions, ensuring that only those vertices in a lower level
of detail are used in reconstruction.

3.3. Deformable model formulation

A hierarchical deformable model technique is now pre-
sented for multiple resolution model fitting. Each mesh in
the hierarchy Ml is formulated as a discretized elastically
deformable surface model [3] that preserves the mesh
parameterisation, the relative position of the surface verti-
ces as defined in Section 3.2, to ensure that the animation
structure for the model remains valid. The energy function
for surface optimisation provides a trade-off in data fitting
using a data term Edata and regularisation of model distor-
tion with respect to the original surface configuration using
a shape term Eshape

Emodel ¼ ð1� kÞEdata þ kEshape ð3Þ

The energy functionals are defined by a set of local con-
straints C with the cost for each constraint defined using
an error function E(C). This formulation can be naturally
extended to include robust error kernels in data fitting. In
this work, we use the L2 � norm, providing a least squares
minimisation of the constraints

EðCÞ ¼ 1

2
CTC ð4Þ

Surface deformation is regularised using a shape constraint
defined in each local reference frame for a vertex. Physi-
cally based deformable model techniques traditionally
make use of an elastic membrane and a thin-plate energy
term in optimisation to regularise both surface stretch
and bending deformations in a model. Minimisation of
the membrane energy leads to a minimal area solution
and minimisation of the thin-plate energy leads to a mini-
mum curvature solution in data fitting. Here, the initial
parameterization of the model is preserved explicitly as well
as the surface shape. As illustrated in Fig. 5, constraining
shape alone is no guarantee that the mesh parameterisation
will be preserved.

The shape cost is designed to provide an elastic con-
straint during optimisation that restores the relative posi-
tions of the vertices i, i 0, j 0,k 0 within each local frame.
The distortion in the vertex parameterisation is constrained
according to the deviation Cp in the parameterised vertex
position xi (i 0, j 0,k 0) in the frame and the scale of the frame
is constrained by minimising the deviation Ce in the edge
length for the frame {i 0, j 0,k 0}. Here x0 denotes the original
location for a vertex

Ceði; jÞ ¼ ðxi � xjÞTðxi � xjÞ � ðx0
i � x0

j Þ
Tðx0

i � x0
j Þ ð5Þ

Cpði; i0; j0; k0Þ ¼ ðxi � xiði0; j0; k0ÞÞ ð6Þ

Eshape ¼
1

N i

X
i2Kl

1

Ni0 ;j0;k0

X
i0 ;j0 ;k02P i;l

EðCeði0; j0ÞÞ

þ EðCeðj0; k0ÞÞ þ EðCeði0; k0ÞÞ
þ EðCpði; i0; j0; k0ÞÞ ð7Þ

A multiple resolution shape constraint is obtained by con-
structing a separate vertex parameterisation {i 0, j 0,k 0} for
the vertices i 2 Kl at each level of detail in the mesh hierar-
chy Ml. Hierarchical deformable model optimisation pro-
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vides a multiple resolution constraint on shape distortion
in data fitting.
4. Model-based shape reconstruction

In this section, a technique is presented for multiple
resolution fitting of a prior mesh to multiple camera
views. A hierarchical representation is first constructed
for a prior model mesh M that decomposes the degrees
of freedom (DOF) in the model into multiple levels of
detail Ml for shape reconstruction. Shape fitting is then
formulated as a coarse-to-fine hierarchical energy mini-
misation process in which the model shape is deformed
to fit shape data in the camera images at progressively
finer resolutions. The output is a deformed model that
satisfies the multiple view appearance with a minimal dis-
tortion in the vertex parameterisation. In Sections 4.1–
4.4, a data energy term is presented for coarse-to-fine
model fitting to multiple shape cues. Finally in Section
4.5, the complete model optimisation framework is pre-
sented for multiple resolution model-based shape
reconstruction.
4.1. Sparse data constraints

Feature constraints are required to specify exact corre-
spondence in shape reconstruction, for example, where
the animation structure in the model corresponds to a spe-
cific feature across multiple views. However, in surface
optimisation a sparse set of constraints provide only a
localised deformation of model shape. Previous approaches
have therefore interpolated the influence of constraints
either within the space containing the model [32] or across
the model surface [9] and by relying on shape regularisation
in optimisation to interpolate the data [44].

The hierarchical model representation is used to propa-
gate the influence of sparse features in data fitting and to
automatically define the region of influence on the surface
of the model. A sparse set of exact constraints fdf g

Nf

f¼1,
Nf� Ni, are defined in R3, together with model correspon-
dence i(f). In construction of the model hierarchy the con-
Fig. 6. Interpolating the influence of (a) a sparse feature constraint using (b
deformable model. The influence of the constraint is propagated across the su
strained vertices are retained at all levels. The exact
constraints are therefore applied at multiple resolutions
starting at the coarsest model with the influence interpo-
lated across the surface between constraints while preserv-
ing the model surface configuration. The effect of satisfying
a sparse set of feature constraints is demonstrated in Fig. 6
for a hierarchical deformable model in comparison with a
single full-resolution deformable model.
4.2. Stereo data

Dense multiple view stereo is used to derive the surface
shape that matches appearance across camera views. A
model-based approach to correspondence estimation is
introduced that performs stereo matching between views
in a coarse-to-fine strategy in optimisation of the hierarchi-
cal model. The model provides an initial estimate of corre-
spondence and visibility across multiple views and a direct
search for correspondence is performed at multiple resolu-
tions, providing a wider range of convergence compared to
local optimisation techniques [14,15].

Stereo matching is performed with respect to a key cam-
era with the closest viewpoint such that the surface can be
assumed to be locally fronto-parallel. Matches are then
located by a direct search in each visible adjacent camera,
termed an offset camera, that forms a stereo pair with the
key view. The search space is constrained by the predefined
search range for the model along the epipolar in rectified
images and according to the camera calibration error per-
pendicular to an epipolar line as illustrated in Fig. 7. The
zero-mean normalised cross correlation (ZNCC) is used
allowing for a linear variation in local intensity between
views [45]. For each model vertex xi a corresponding set
of stereo data points are derived giving a complete stereo
data set fdsgNs

s¼1 and model correspondence i(s).
4.3. Silhouette data

Stereo correspondence fails where there is insufficient
appearance variation within an image for reliable matching
and at depth discontinuities where the surface is perpendic-
) a deformable model at a single resolution and (c) a multiple resolution
rface in the multiple resolution model.



Fig. 7. Direct search for stereo correspondence in offset camera images
with respect to a key camera view. The closest camera view is selected for
the key view and a fronto-parallel surface is assumed for matching in
rectified stereo camera pairs. The search range is defined by the matching
scale along and the reprojection error perpendicular to the epipolar lines.
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ular to the viewing plane. Shape from silhouette provides a
bounding constraint on the surface shape that provides a
complementary visual cue where stereo is ambiguous or
fails. Previous model-based techniques make use of 2D
image constraints for 3D reconstruction from image sil-
houettes [7,4]. This is based on the assumption that the
projected shape of the model matches the silhouette con-
tour. However for a general body pose, even small changes
in model articulation can lead to large changes in the
apparent 2D contour and an explicit 2D constraint is
unreliable.

Shape from silhouette is satisfied by matching the sur-
face of the visual-hull, the maximal volume that reproduces
the 2D image silhouettes [46]. The visual-hull combines sil-
houette constraints across views and closest point assign-
ment in R3 enforces a single silhouette constraint for each
model vertex. Iterative closest point assignment in optimi-
sation allows the correspondence to vary across the 2D
contour and to switch between views removing the require-
ment for an explicit 2D constraint.

A volumetric reconstruction of the visual-hull is per-
formed to derive the discrete set of voxels fdvgNv

v¼1 on the
visual-hull surface. Each model vertex, xi, is matched to
the closest point on the visual-hull providing the corre-
spondence v(i) as follows:

vðiÞ ¼ argminv2f1...Nvgkxi � dvk2 ð8Þ
4.4. Combining shape cues

Data constraints are defined in terms of three visual
cues: shape from silhouette, stereo correspondence and
sparse feature constraints. Silhouettes provide a robust
constraint on shape, however the shape information avail-
able is limited giving only an approximate shape and image
correspondence. Stereo matching allows recovery of more
accurate geometry and image correspondence given suffi-
cient variation in local appearance for reliable stereo
matching. Finally feature constraints allow exact con-
straints for user-defined image correspondence.

Shape cues are combined using a weight wf
i , ws

i , wv
i that

quantifies the confidence in fitting each data term at a ver-
tex i. Matching is prioritised to satisfy exact constraints,
then stereo data where matching is reliable and finally
shape from silhouette. A binary weight is defined at a ver-
tex wf

i ¼ ð0; 1Þ enforcing feature matching. A soft weight is
defined for stereo matching 0 < ws

i < 1. A constant silhou-
ette term wv

i ¼ 1 is used to incorporate shape from silhou-
ette where ws

i ! 0. The data term for model fitting is then
defined as follows:

CdataðiÞ ¼ wf
i ðxi � df ðiÞÞ þ ð1� wf

i Þws
i ðxi � dsðiÞÞ

þ ð1� wf
i Þð1� ws

i Þwv
i ðxi � dvðiÞÞ ð9Þ

Edata ¼
1

N i

X
i2Kl

EðCdataðiÞÞ ð10Þ
The confidence metric 0 < ws
i < 1 for stereo matching at a

vertex i is derived using image entropy to quantify the abil-
ity to derive stereo correspondence. Different confidence
metrics have been proposed to define the performance of
stereo matching algorithms [47], including the matching
score itself, the ratio between peak scores, the curvature
of the quadratic fit in subpixel localisation, and the entropy
of the image areas used in matching. With the ZNCC
matching score, the variation in intensity in each image
area is normalised and so both a high matching score
and a high curvature in localisation can be obtained when
matching regions of low intensity variation where corre-
spondence is inherently ambiguous. Furthermore in
coarse-to-fine matching the search region is successively
reduced and peak scores cannot be compared within a
small matching region. Instead image variation is used as
a measure of image entropy to quantify regions of high
intensity variation where good correspondence is likely to
be obtained in stereo matching.

Image variation is precomputed in each camera view
and a simple lookup operation is performed to define ws

i

in the key camera used for a vertex in stereo matching.
Intensity variation is quantified using the standard devia-
tion r in pixel intensity for the image area used in stereo
correlation and normalised in the range 0 < ws

i < 1 using
a control parameter r0. This user-defined control parame-
ter can be changed to restrict matching either to prominent
features r0 fi 127 or all areas r0 fi 0 for an 8-bit image.
Throughout this work a fixed value of r0 = 10 is adopted
ensuring that stereo matching is restricted to regions where
the intensity variation exceeds the maximum expected noise
level for the camera system. Fig. 8 illustrates the confidence
metric for a whole-body image of a person for different
parameter settings

ws ¼ 1� exp � r2

r2
0

� �
ð11Þ



Fig. 8. The confidence metric ws precomputed at all pixels in an image using a 13 · 13 image window. Brighter areas correspond to a high confidence value
for stereo matching.
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4.5. Hierarchical model optimisation

The complete framework is now described for image-
based reconstruction from multiple camera views using a
prior triangulated surface mesh. The input is a mesh M

together with a set of calibrated camera images and option-
ally a set of exact feature constraints fdf g

Nf

f¼1 with a prede-
fined model correspondence f(i). The set of surface voxels
for silhouette data fitting, fdvgNv

v¼1 is derived and an octree
structure is constructed for fast closest point lookup. The
set of stereo confidence images is calculated to lookup
the stereo confidence score ws

i in model optimisation. A
hierarchical deformable model is then constructed from
the mesh M for shape optimisation.

The reconstruction algorithm schedules model fitting
first at the coarsest level M0 in the mesh hierarchy and opti-
mises the subset of vertices xi 2 K0. Model optimisation is
guaranteed to converge monotonically to a local minima
at each level as each iteration in optimisation reduces the
total cost C. The vertex transformations are then propa-
gated to the next level in the hierarchy xi 2 K1 and this level
is then scheduled for optimisation. The process is repeated
until the finest level of detail corresponding to the original
surface mesh M is reached. At each level in the hierarchy
Ml an iterative, alternating strategy of correspondence esti-
mation followed by model optimisation is used for data fit-
ting. At each iteration the set of stereo data points fdsgNs

s¼1

for the model vertices and the silhouette assignment v(i) are
derived. The model Ml is then optimised to fit the feature,
stereo and silhouette data constraints.

An annealing schedule is constructed for coarse-to-fine
recovery of image correspondence in model optimisation.
The search range for correspondence is specified by a sur-
face error �. The error is initialised as the worst-case error
for the model and updated according to a geometric sche-
dule � = k · �, 0 < k < 1 at each iteration of model optimi-
sation. The convergence criteria for model optimisation is
set where the maximum data error falls within the error tol-
erance at the next level of optimisation such that that the
recovered correspondence remains valid at the next step
of optimisation. Where a model is over-constrained by reg-
ularisation and data fitting is not possible a limit on the
maximum number of iterations can be introduced. Transi-
tions are tied between levels of detail in the model hierar-
chy using a linear schedule starting at the coarsest model
resolution. Optimisation terminates where the highest reso-
lution mesh converges within the reconstruction accuracy
of the camera system. The user-defined parameter k is set
to a constant value k = 0.7 throughout this work, provid-
ing a conservative annealing schedule at the cost of a
potentially greater computational complexity. In practise
this parameter could be tuned to achieve a desired time-
accuracy trade-off for a target application area.

Mesh optimisation at a level Ml and minimisation of the
corresponding non-linear cost function Emodel is performed
using the conjugate gradient method. The step length in
conjugate gradient descent is defined by performing a line
search using the back-tracking algorithm. Techniques such
as Gauss–Newton and Levenberg–Marquardt (LM) can
also be applied for minimisation as the cost function is
expressed in terms of squared error residuals. It is interest-
ing to note that the LM algorithm is equivalent to an impli-
cit integration approach to dynamic deformable model
evolution using a backward Euler integration step. Implicit
techniques have been proposed [48,49] to increase the step
length and stability in dynamic deformations. In practise
we found the increase in computational cost for the LM
algorithm outways the advantage of large step lengths in
optimisation and with large mesh deformations the algo-
rithm spends the majority of iterations performing gradient
descent steps.

5. Results

A framework has been presented to construct a hierar-
chical deformable model for a prior triangulated surface
and then to optimise surface shape combining cues from
silhouette, stereo and sparse feature data from multiple
camera images. This technique provides the following key
advantages in image-based modelling: unrestricted model,
there is no restriction on the triangulated surface used in
model fitting; multiple resolution fitting, hierarchical fitting
avoids local minima in shape optimisation; and vertex

parameterisation, the vertex parameterisation in the prior
model is preserved such that the prior animation structure
for the model can be reused to synthesise animations.
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5.1. Evaluating model reconstruction

Previous model-based reconstruction approaches have
required a specific triangulated surface structure, requiring
either a closed genus-zero surface or a predefined low-res-
olution mesh. The technique presented in this paper is spe-
cifically designed for use with any high-resolution
triangulated surface model. Two sets of experiments were
performed in evaluation, first human face reconstruction
using an open triangulated surface and second whole-body
shape reconstruction with a closed genus-zero triangulated
surface. The hierarchical representation for the models is
shown in Fig. 2.

A quantitative evaluation is presented for the range of
convergence in multiple resolution model fitting and the
resulting distortion in the vertex parameterisation for the
recovered shape models. A maximum range of convergence
is required to overcome local minima in iterative surface
optimisation. A minimal distortion is required in the vertex
parameterisation for a model such that the animation
structure for the model remains valid. A registration pro-
cess is required to first align the models with target images
for reconstruction and a manual registration step is per-
formed in this work. The reconstruction accuracy is pre-
sented against a range of registration errors in model
pose to evaluate the range of convergence in model fitting
and the corresponding distortion in the final surface is
quantified to evaluate distortion in the vertex
parameterisation.

Reconstruction accuracy is defined using the root-mean
square (RMS) error across the surface from the optimised
model to ground-truth data. The error is computed by uni-
formly sampling each triangle of the model surface and for
each point taking the distance to the closest point in the
target ground-truth data set. Surface distortion is quanti-
fied using the Dirichlet energy for the mapping
f : R3 ! R3 between the original and deformed vertex con-
figuration. A tangent plane is defined, centred at each trian-
gle and a local linear mapping A is calculated between
triangles. The mapping A = [fu fv] is a 2D affine map corre-
sponding to the gradient of the piecewise linear mapping f

defined in the local tangent space uv for a triangle. The
total distortion in the triangulation is normalised as follows
such that no distortion in the vertex parameterisation
results in a unit distortion term

distortion ¼ 1

Ni;j;k

X
i;j;k2K

1

2
f 2

u þ f 2
v

� �
ð12Þ
5.2. Comparison to a standard deformable model

A reference implementation of a single resolution phys-
ics-based deformable model is provided for comparison of
performance. A conventional node-spring model is
adopted as widely used in model fitting [23] and in simula-
tion of dynamic surface deformations, see, for example,
[50]. In this model the vertices of the mesh are treated as
nodes and edges in the triangulation springs with a rest-
length given by the initial configuration. The surface
deforms as an elastic sheet and rigidity is introduced using
diagonal springs connecting opposite vertices on triangles
that share a common edge.

In this paper, a novel shape regularisation term is intro-
duced to explicitly preserve mesh parameterisation in opti-
misation. For a fair comparison a fixed value k = 0.5 is
used giving equal weight to data fitting and regularisation.
The regularisation term k was then optimised for the refer-
ence model to obtain an equivalent performance in mini-
mising mesh distortion. A random target data set was
constructed for 10 trials and the full-resolution model opti-
mised first using the proposed technique with k = 0.5, then
as the reference model for a range of k values. The mean
minimum value of k was then selected such that the refer-
ence model gave the same mesh distortion in data fitting as
the proposed technique. For the face model k = 0.89 was
obtained and for the whole-body model k = 0.78. This
result in itself demonstrates that the proposed constraint
on mesh parameterisation serves to reduce model distor-
tion such that less regularisation is required in surface
optimisation.

5.3. Sparse feature matching

The influence of sparse feature constraints is demon-
strated in a series of experiments where the multiple res-
olution model is compared to the full-resolution
reference implementation. Here the open-face model is
optimised to fit seven feature constraints located at the
corners of the eyes, mouth and on the tip of the nose
as shown in Fig. 9(a). Optimisation is performed for
20 subjects (10 male, 10 female) and for a range of rota-
tion errors in model pose applied about a random axis of
rotation. The ground-truth surface for this test set, illus-
trated in Fig. 9(a), was reconstructed using three stereo
pairs imaging an infra-red speckle pattern projected on
the face [51].

The shape deformation induced by the feature corre-
spondences in this problem can be solved relatively simply
with a rigid-body or affine transformation. The evaluation
serves to demonstrate the propagation of constraints
across the mesh with the hierarchical representation
avoiding local minima in optimisation. We expect a full-
resolution mesh to have only a localised influence from
sparse constraints. Fig. 9 shows the result of model opti-
misation for one subject with an initial pose error of 45�.
For the reference model the constraints have only a local
effect whereas the multiple resolution model recovers the
global pose in fitting the constraints. The reconstruction
error and the distortion in the mesh parameterisation
are shown in Fig. 10. The multiple resolution model
increases the range of convergence in fitting the ground-
truth surface and reduces the distortion in the optimised
mesh. The hierarchical representation for the model serves



Fig. 9. Fitting sparse feature constraints for one subject with a 45� error in model pose, showing convergence to a local minima with the reference model
and global fitting with the multiple resolution model.
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Fig. 10. (a) RMS surface error to ground-truth data and (b) mesh distortion, for the multiple resolution model compared to the reference model in fitting
sparse feature points for a range of initial model rotations across 20 test subjects in face reconstruction.
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to propagate the local effects of fitting sparse constraints
at the lowest mesh resolution through to the full-resolu-
tion surface. The vertex parameterisation minimises the
mesh distortion in optimisation and maintains the shape
of the open surface mesh.
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Fig. 11. (a) RMS surface error to ground-truth data and (b) mesh distortion, fo
stereo, silhouette and feature data for a range of initial model rotations acros
5.4. Combining sparse, stereo and silhouette shape cues

Surface optimisation combining silhouette, stereo and
feature cues was evaluated for face reconstruction. Three
camera views are used in model fitting as shown in
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Fig. 12. Model-based shape reconstruction from three wide-baseline camera positions combining stereo, silhouette and feature data constraints.
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Fig. 12 representing a challenging problem for both shape
from silhouette where limited views are available and stereo
reconstruction with wide-baseline camera positions.

Reconstruction accuracy and model distortion are
shown in Fig. 11. The multiple resolution model again
demonstrates a greater range of convergence compared
to the reference model. Model distortion is now found
to increase for the reference in fitting the unreliable ste-
reo data across wide-baseline camera views. The multiple
resolution technique serves to provide model convergence
while maintaining the vertex parameterisation in fitting
error prone data. The RMS reconstruction error demon-
strates a systematic error compared to the ground-truth
data arising from inexact correspondence between the
wide-baseline images in regions of low image texture.
Subjectively the recovered shape models shown in
Fig. 12 provide a close approximation to underlying
shape of the face.
5.5. Model regularisation

The proposed technique includes several tunable
parameters and the parameter choice was evaluated for
shape reconstruction against ground-truth for the face
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Fig. 13. RMS surface error to ground-truth data with different regularisation k

subjects in face reconstruction. Individual data points are excluded for clarity
model. In all experiments the initial model error for ste-
reo matching is set at 10 cm and reconstruction accuracy
at 1 mm. Image entropy r0 = 10 is fixed according to the
noise levels in the imaging system as described in Section
4.4. A conservative annealing schedule is fixed k = 0.7 as
described in Section 4.5. Model regularisation was then
evaluated by changing the shape regularisation term k

in Eq. 3 and number of levels of detail (LOD) in the
model hierarchy.

Fig. 13 shows the RMS reconstruction error. The
choice of k and LOD is expected to be coupled. The
model hierarchy provides a multiple resolution constraint
in data fitting, as the number of LOD increases, the
region over which the shape is constrained is increased
for a given k. Hierarchical optimisation both increases
the range of convergence for the model and decreases
the corresponding shape constraint k required in data fit-
ting. The reconstruction error demonstrates that the
range of convergence and accuracy increase up to a crit-
ical LOD and regularisation k. As model regularisation
increases the model will become over-constrained. In a
practical system the minimum number of LOD and reg-
ularisation k would be chosen to achieve the desired con-
vergence and accuracy.
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Fig. 14. Initial pose for the whole-body humanoid model showing (left to
right) a 30�, 20�, 10� and zero registration error in skeletal pose in
comparison with the reconstructed shape for zero pose error.
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5.6. Whole-body shape reconstruction

Whole-body shape reconstruction was evaluated over a
range of distinct body poses in a multiple view video
sequence. Nine camera views were used forming four stereo
pairs with one camera positioned overhead. The multiple res-
olution model was constructed from 15 LOD with a regular-
isation term k = 0.5 as presented for face reconstruction.
Feature constraints were applied at the eyes, nose, mouth
and limb tips. The body model has a skeleton structure with
17 articulated joints that are posed manually. The surface is
animated using a standard vertex weighting scheme in which
each bone in the skeleton is associated with a set of mesh ver-
tices with a corresponding set of animation weights. The
range of errors in pose used in reconstruction and the corre-
sponding surface configuration is illustrated in Fig. 14.

The RMS reconstruction error and model distortion are
shown in Fig. 15. Ground-truth shape is not available for
this data set and a relative reconstruction error is derived
with respect to the proposed technique with zero pose
error. The pose error was introduced about a random axis
of rotation in the articulated model structure up to a 30�
limit, representating a challenging problem in reconstruc-
tion where the model can have self-intersections and up
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Fig. 15. RMS surface error and model distortion for 12 different body pos
Reconstruction is evaluated for a 30� range of pose errors introduced in the art
resolution model with zero pose error.
to 0.5 m error at the limb tips. The proposed technique
shows a reduced reconstruction error with an increased
range of convergence along with a reduced model
distortion.

Shape reconstruction and appearance recovery is shown
in Fig. 16 for different body poses. The results demonstrate
reconstruction in the presence of complex self occlusions in
the camera images. The prior model provides the expected
surface shape allowing the estimation of surface visibility in
the images in surface optimisation. A disadvantage of
model-based approaches to reconstruction should be noted
here where the model lacks the detailed geometry of the
hands. There is insufficient information in the camera
images to reconstruct the fingers which are in the order
of one pixel wide. The generic model does not contain
hands and so does not provide the prior information neces-
sary to provide a model complete with the structure of the
hands. Model-based techniques are inherently limited by
the prior model chosen for reconstruction. The model must
be selected to represent the space of shapes that need to be
recovered and model regularisation must be set to con-
strain model fitting where insufficient data is available to
recover the desired shape.
6. Motion synthesis

The key advantage of a model-based approach to
human shape reconstruction is now demonstrated. The
whole-body model used in this work is instrumented with
a skeletal structure to animate the model surface. The com-
plex process of creating the model dynamics can be per-
formed once and the reconstructed surface models can
then be animated. This allows the synthesis of new dynamic
content from the original camera images with the freedom
to control viewpoint in visualisation.

The complete surface appearance for a person is derived
as a single texture map for the model from the camera
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es for the multiple resolution model compared to the reference model.
iculated body model. Surface error is provided with respect to the multiple



Fig. 16. Model-based shape reconstruction for a range of different body poses with self-occlusions.
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images. The 2D texture domain is predefined for the
humanoid model. Texture blending is then performed using
a weighted average of the textures derived from different
Fig. 17. Texture-mapped models for three su
camera views. A smooth transition at the texture bound-
aries can be achieved with a smooth transformation of
the relative weight given to each view. Techniques for
bjects captured from nine camera views.



Fig. 18. Animated sequences for six reconstructed subjects created using the animation structure for the generic humanoid model.
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blending make use of factors such as the relative orienta-
tion of the surface with respect to a camera view and the
relative distance to the edge of the texture to define the
weighting term [52]. Here a multiple resolution blending
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technique is used as introduced by [53]. A multiple resolu-
tion approach ensures that the extent of texture blending
corresponds to the spatial frequency of the features in the
texture image, preserving the higher frequency detail in
the resampled appearance. Fig. 17 shows the texture map
recovered for models constructed for three different sub-
jects. Given a texture mapped model we are free to generate
new animated content as shown in Fig. 18.
7. Conclusion

In this paper, a framework is presented for model-
based reconstruction from multiple view images. A gen-
eral technique is presented for multiple resolution fitting
of an open or closed irregular surface mesh of arbitrary
topology designed for rendering in a conventional com-
puter graphics pipeline. This allows fitting of a model
designed for efficient rendering and animation without
distortion of the mesh structure. A local shape parame-
terisation is introduced that allows reconstruction of ver-
tex positions for surface fitting at multiple levels of
detail in a hierarchical model. This local parameterisa-
tion is used to introduce an explicit constraint on the
mesh vertices at different model resolutions minimising
distortion in optimisation and preserving the validity
of parameterisation-dependent properties such as anima-
tion weights.

A model-based approach to reconstruction is adopted
introducing prior knowledge of the scene structure to
infer visibility across views and to regularise shape
reconstruction in the presence of ambiguous or noisy
data. The reconstruction method combines silhouette,
stereo and user-defined feature constraints with shape
regularisation. Model-based stereo uses a direct search
for stereo correspondence at multiple resolutions, avoid-
ing convergence to local minima associated with local
surface optimisation techniques. A trade-off is intro-
duced between the complementary cues from silhouette
and stereo data, and sparse feature constraints are inter-
polated across the model using the hierarchical
representation.

The proposed technique was evaluated for face and
whole-body shape reconstruction using open and closed
surface models. The framework demonstrates an improved
range of convergence and reconstruction accuracy with a
reduced surface distortion in optimisation compared to a
baseline single resolution deformable model. The key
advantage of this approach is that a common structured
representation is obtained for all reconstructed surfaces
allowing animation synthesis from the original multiple
view images. This structured representation is however
based on the assumption that a single underlying model
is sufficient to represent the space of observed shapes.
Future research should address the representation of
detailed surface geometry that is either not present in the
underlying geometric model or cannot be represented by
the model surface such as long flowing hair or extensive
clothing deformation.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.cviu.2007.
10.001.
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[49] M. Desbrun, M. Meyer, P. Schröder, A.H. Barr, Implicit fairing of
irregular meshes using diffusion and curvature flow, ACM Transac-
tions on Graphics (ACM SIGGRAPH 1999) (1999) 317–324.

[50] X. Provot, Deformation constraints in a mass-spring model to describe
rigid cloth behavior, in: Graphics Interface, 1995, pp. 147–154.

[51] I. Ypsilos, A. Hilton, S. Rowe, Video-rate capture of dynamic face
shape and appearance, 2004, pp. 117–122.

[52] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, D. Salesin, Synthe-
sizing realistic facial expressions from photographs, ACM Transac-
tions on Graphics (ACM SIGGRAPH 1998) (1998) 75–84.

[53] P. Burt, E. Adelson, A multiresolution spline with application to
image mosaics, ACM Transactions on Graphics 2 (4) (1983) 217–236.


	Model-based human shape reconstruction from multiple views
	Introduction
	Related work
	Object-centred scene reconstruction
	Functional modelling
	Contribution

	Multiple resolution model
	Hierarchical mesh representation
	Surface parameterisation in  {{\open{R}}}^{3}
	Deformable model formulation

	Model-based shape reconstruction
	Sparse data constraints
	Stereo data
	Silhouette data
	Combining shape cues
	Hierarchical model optimisation

	Results
	Evaluating model reconstruction
	Comparison to a standard deformable model
	Sparse feature matching
	Combining sparse, stereo and silhouette shape cues
	Model regularisation
	Whole-body shape reconstruction

	Motion synthesis
	Conclusion
	Supplementary data
	References


