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Abstract

This survey reviews advances in human motion capture and analysis from 2000 to 2006, following a previous survey of papers up to
2000 [T.B. Moeslund, E. Granum, A survey of computer vision-based human motion capture, Computer Vision and Image Understand-
ing, 81(3) (2001) 231–268.]. Human motion capture continues to be an increasingly active research area in computer vision with over 350
publications over this period. A number of significant research advances are identified together with novel methodologies for automatic
initialization, tracking, pose estimation, and movement recognition. Recent research has addressed reliable tracking and pose estimation
in natural scenes. Progress has also been made towards automatic understanding of human actions and behavior. This survey reviews
recent trends in video-based human capture and analysis, as well as discussing open problems for future research to achieve automatic
visual analysis of human movement.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Automatic capture and analysis of human motion is a
highly active research area due both to the number of poten-
tial applications and its inherent complexity. The research
area contains a number of hard and often ill-posed problems
such as inferring the pose and motion of a highly articulated
and self-occluding non-rigid 3D object from images. This
complexity makes the research area challenging from a pure-
ly academic point of view. From an application perspective
computer vision-based methods often provide the only
non-invasive solution making it very attractive.

Applications can roughly be grouped under three titles:
surveillance, control, and analysis. Surveillance applications

cover some of the more classical types of problems related
to automatically monitoring and understanding locations
where a large number of people pass through such as

airports and subways. Applications could for example be:
people counting or crowd flux, flow, and congestion analy-
sis. Newer types of surveillance applications—perhaps
inspired by the increased awareness of security issues—
are analysis of actions, activities, and behaviors both for
crowds and individuals. For example for queue and shop-
ping behavior analysis, detection of abnormal activities,
and person identification.

Control applications where the estimated motion or pose
parameters are used to control something. This could be
interfaces to games, e.g., as seen in EyeToy [3], Virtual
Reality or more generally: Human–Computer Interfaces.
However, it could also be for the entertainment industry
where the generation and control of personalized computer
graphic models based on the captured appearance, shape,
and motion are making the productions/products more
believable.

Analysis applications such as automatic diagnostics of
orthopedic patients or analysis and optimization of an ath-
letes’ performances. Newer applications are annotation of
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video as well as content-based retrieval and compression of
video for compact data storage or efficient data transmis-
sion, e.g., for video conferences and indexing. Another
branch of applications is within the car industry where
much vision research is currently going on in applications
such as automatic control of airbags, sleeping detection,
pedestrian detection, lane following, etc.

The number of potential applications, the scientific com-
plexity, the speed and price of current hardware, and the
focus on security issues have intensified the effort within
the computer vision community towards automatic capture
and analysis of human motion. This is evident by looking at
the number of publications, special sessions/issues at the
major conference/journals as well as the number of work-
shops directly devoted to such topics. Furthermore, the
major funding agencies have also focused on these research
fields—especially the surveillance area.

The interest in this area has led to a large body of
research which has been digested in a number of surveys,
see Table 1.

Even though some of these surveys are recent, it should
be noted that the number of papers reviewed after 2000 is
limited as seen in the table. In the relatively short period
since 2000 a massive number of papers have been published
advancing state of the art. This indicates increased activity
in this research area compared to the number of papers
identified in previous surveys.

Recent contributions have among other things
addressed the limiting assumptions identified in previous
approaches [247]. For example, many systems now
address natural outdoor scenes and operate on long
sequences of video containing multiple (occluded) people.
This is possible, especially, due to more advanced seg-
mentation algorithms. Other examples are model-based
pose estimation where the introduction of learnt motion
models and stochastic sampling methods have helped to
achieved much faster and more precise results. Also with-
in the recognition area there have been significant
advances in both the representation and interpretation
of actions and behavior.

Due to the significance of recent advances within this
field we present the current survey. The survey is based
on 3521 recent papers (2000–2006) and structured using
the functional taxonomy presented in the 2001 survey by
Moeslund and Granum [247]:

Initialization. Ensuring that a system commences its
operation with a correct interpretation of the current
scene.
Tracking. Segmenting and tracking humans in one or
more frames.
Pose estimation. Estimating the pose of a human in one
or more frames.
Recognition. Recognizing the identity of individuals as
well as the actions, activities and behaviors performed
by one or more humans in one or more frames.

The different papers are further divided into sub-taxono-
mies. Inspired by [247] we also provide a visual overview of
all the recent referenced papers, see Table 2. For readers
new to this field it is recommended to read [247] before pre-
ceding with the survey at hand. In fact this survey can be
seen as a sequel to [247].

2. Model initialization

Initialization of vision-based human motion capture and
analysis often requires the definition of a humanoid model
approximating the shape, appearance, kinematic structure,
and initial pose of the subject to be tracked. The majority
of algorithms for 3D pose estimation continue to use a
manually initialized generic model with limb lengths and
shape which approximate the individual. To automate
the initialization and improve the quality of tracking a lim-
ited number of authors have investigated the recovery of

Table 1
Previous surveys

Year Author #Papers Focus

1994 Aggarwal et al. [10] 69/0 Articulated and elastic nonrigid motion
1994 Cedras and Shah [54] 76/0 Motion extraction
1995 Aggarwal et al. [11] 104/0 Articulated and elastic nonrigid motion
1995 Ju [181] 91/0 Motion estimation and recognition
1997 Aggarwal and Cai [9] 51/0 Motion extraction
1997 Gavrila [114] 87/0 Motion estimation and recognition
2000 Moeslund and Granum [247] 155/0 Initialization, tracking, pose estimation, and recognition
2001 Buxton [48] 88/6 Recognition
2001 Wang et al. [388] 164/14 Detection, tracking, and recognition
2003 Hu et al. [157] 185/54 Surveillance
2004 Aggarwal and Park [12] 58/10 Recognition

2006 This survey 424/331 Initialization, tracking, pose estimation, and recognition

Note that the Year is not necessary the publication year but rather the year of the most recent paper in a survey. The two numbers in the #Papers column
state the total number of publications and the publications after 2000.

1 Note that this number is different from the one listed in Table 1 (331).
The reason being that we also include papers from the last half of 2000
since this is where the previous survey [247] ends.
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Table 2
Publications on human motion capture and analysis from 2000–2006 (inclusive)

Year First author Initialisation Tracking Pose estimation Recognition

Publications 2000–2006 (inclusive)

2000 Barron [26]
2000 Buades [45]
2000 Chang * [56] *
2000 Davis [84]
2000 Deutscher * [90]
2000 Elgammal [96]
2000 Felzenszwalb [104]
2000 Haritaoglu * [138] * *
2000 Howe * [154]
2000 Ivanov * [171]
2000 Karaulova * * [189]
2000 Khan * [194]
2000 Oliver [270]
2000 Ormoneit [274] * *
2000 Ricquebourg [304] *
2000 Stauffer * [355]
2000 Takahashi [359] *
2000 Taylor [361] *
2000 Trivedi [367]
2000 Trivedi * [368]
2000 Zhao [417]
P

Total = 21 2 9 8 2

2001 Ambrosio [16]
2001 Ambrosio [17]
2001 Barron [27]
2001 Bobick [38]
2001 Choo [62]
2001 Davison [85]
2001 Delamarre * [86]
2001 Deutscher [91]
2001 Elgammal * [100]
2001 Grammalidis * [124]
2001 Gutchess [130]
2001 Haritaoglu * [134]
2001 Herda * * [143]
2001 Hoshino * [150]
2001 Huang * [159]
2001 Intille [166]
2001 Ioffe * [168]
2001 Khan [193]
2001 Li [218]
2001 Mikić * * [239]
2001 Moeslund * * [247] *
2001 Moeslund * * [248]
2001 Mohan [254]
2001 Moon * [258]
2001 Ogaki * [268]
2001 Pece * [284]
2001 Plänkers * [287]
2001 Prati [292]
2001 Rosales * [294]
2001 Sangi [320]
2001 Sato [321] *
2001 Sidenbladh * * [332]
2001 Sminchisescu * [342]
2001 Song [348]
2001 Song [349]
2001 Zhao [422] *P

Total = 36 1 9 23 3

2002 Allen [14]
2002 Atsushi [21]
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Table 2 (continued)

Year First author Initialisation Tracking Pose estimation Recognition

Publications 2000–2006 (inclusive)

2002 Ben-Arie * * [31]
2002 BenAbdelkader * [32]
2002 Bradski * [40]
2002 Cheng * [58]
2002 Davis * * [83]
2002 Fua * [112]
2002 Gleicher [118]
2002 Gonzàlez [121]
2002 Halvorsen * [131]
2002 Hariadi [133]
2002 Haritaoglu [135] *
2002 Herda * [146]
2002 Huang * [163]
2002 Ijspeert [165]
2002 Jang [173] *
2002 Jenkins [175]
2002 Jenkins [176]
2002 Jenkins [177]
2002 Lee * * [212]
2002 Li * [219]
2002 Metaxas [234]
2002 Mikić * * [237]
2002 Mittal [243]
2002 Moeslund [253] * *
2002 Montemerlo [257]
2002 Ozer [275] * *
2002 Park [280] *
2002 Pece [285] *
2002 Pers [286]
2002 Plänkers * [288]
2002 Rao * * [298]
2002 Ren * * [300]
2002 Rittscher * * * [305]
2002 Roberts * [309]
2002 Ronfard [314]
2002 Sidenbladh * [335]
2002 Sminchisescu * [339]
2002 Theobalt * * [364]
2002 Utsumi * [374]
2002 Yam * [402]
2002 Zhao [418]P

Total = 43 3 12 14 14

2003 Allen [15]
2003 Azoz * [22]
2003 Babu [23]
2003 Barron [28] *
2003 Buxton [48]
2003 Capellades [52] *
2003 Carranza * * [53]
2003 Cheung * * [59]
2003 Chowdhury [63]
2003 Chu * [65]
2003 Comaniciu [67]
2003 Cucchiara [69]
2003 Davis [79]
2003 Demirdjian * [87]
2003 Demirdjian * [89]
2003 Efros [94]
2003 Elgammal [95]
2003 Elgammal [99]
2003 Eng [101] *
2003 Foster * [111]
2003 Gerard * [115]

(continued on next page)
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Table 2 (continued)

Year First author Initialisation Tracking Pose estimation Recognition

Publications 2000–2006 (inclusive)

2003 Gonzalez [122] *
2003 Grauman [125]
2003 Herda * [142]
2003 Jepson [178]
2003 Koschan [198]
2003 Krahnstoever [201] * *
2003 Liebowitz * [220]
2003 Masoud [231]
2003 Mikić * * [238]
2003 Mitchelson [241]
2003 Mitchelson * [242]
2003 Mittal [244]
2003 Moeslund * * [245]
2003 Moeslund * [249]
2003 Moeslund * [250]
2003 Monnet [256]
2003 Parameswaran [277]
2003 Plänkers * [289]
2003 Polat [290]
2003 Prati [293]
2003 Shah [325] * *
2003 Shakhnarovich [326]
2003 Sidenbladh * [333] *
2003 Sminchisescu * [343]
2003 Sminchisescu * [344]
2003 Song [350] * *
2003 Starck [351]
2003 Starck [352] *
2003 Störring [357]
2003 Vasvani [375]
2003 Vecchio [376]
2003 Viola [381]
2003 Wang [387]
2003 Wang [388] * *
2003 Wang * * [389]
2003 Wang * [390]
2003 Wang [391]
2003 Wu [398]
2003 Yang [405]
2003 Zhao [419]
2003 Zhong [423]P

Total = 62 6 21 21 14

2004 Agarwal [6]
2004 Agarwal * [7]
2004 Agarwal [12]
2004 Billard [34]
2004 Bregler [43]
2004 Brostow [44]
2004 Chowdhury [64]
2004 Cucchiara [70]
2004 Date [78]
2004 Davis [81]
2004 Davis [82]
2004 Demirdjian [88]
2004 Elgammal [97]
2004 Elgammal [98]
2004 Figueroa [105]
2004 Gao [113] *
2004 Giebel [116]
2004 Gonzàlez [120]
2004 Gritai [127]
2004 Hayashi [139]
2004 Heikkila [140]
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Table 2 (continued)

Year First author Initialisation Tracking Pose estimation Recognition

Publications 2000–2006 (inclusive)

2004 Herda [144]
2004 Howe * [152]
2004 Hu [155]
2004 Hu [157] * *
2004 Huang * * [160] *
2004 Iwase [172]
2004 Junejo * [182]
2004 Kang [186] *
2004 Krahnstoever [200] *
2004 Lee * * [210]
2004 Lee * * [211]
2004 Leo [217]
2004 Loy [225]
2004 Lu [226]
2004 Lv * [228]
2004 Mikolajczyk * [240]
2004 Moeslund * [251]
2004 Mori [261]
2004 Murakita [263]
2004 Okuma [269]
2004 Pan [276]
2004 Parameswaran [278] *
2004 Park [281]
2004 Porikli [291]
2004 Remondino [299]
2004 Ren [301]
2004 Roberts [310]
2004 Sidenbladh * [331]
2004 Sigal [336]
2004 Thalmann [363]
2004 Urtasun * [373]
2004 Wu [397]
2004 Yang [406]
2004 Yang [407]
2004 Yi [409]
2004 Zhao [420]
2004 Zhao * [421]
P

Total = 58 5 19 19 15

2005 Andersen [18]
2005 Balan [25]
2005 Beleznai [29]
2005 Blank [36]
2005 Boiman [39]
2005 Bullock * * [47] *
2005 Calinon [50]
2005 Calinon [51]
2005 Chalidabhongse [55]
2005 Chen * [57]
2005 Cheung * [60]
2005 Cucchiara * [71]
2005 Curio [73]
2005 Dahmane [74] *
2005 Dalal [75]
2005 Deutscher [92]
2005 Dimitrijevic [93] *
2005 Fanti * [103]
2005 Guha [129]
2005 Herda [145] *
2005 Howe [151]
2005 Kang [187]
2005 Kang [188]

(continued on next page)
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Table 2 (continued)

Year First author Initialisation Tracking Pose estimation Recognition

Publications 2000–2006 (inclusive)

2005 Ke [190]
2005 Kehl [191]
2005 Kim [196]
2005 Krosshaug [203]
2005 Krüger * [204]
2005 Kumar [205] * *
2005 Lee [208]
2005 Lee * * [214]
2005 Leibe [215]
2005 Lim [222]
2005 Micilotta [235]
2005 Moeslund * * [246]
2005 Moeslund [252] * *
2005 Mulligan * [262]
2005 Navaratnam [265]
2005 Ong [272]
2005 Ormoneit [273]
2005 Ramanan * [296]
2005 Ren [302]
2005 Robertson [311]
2005 Roth [316]
2005 Sanfeliu [319]
2005 Sheikh [327]
2005 Sheikh [328]
2005 Sminchisescu [340]
2005 Smith [345]
2005 Smith [346]
2005 Starck * * [353]
2005 Toyosawa [366] *
2005 Ukita [369]
2005 Urtasun * [370]
2005 Urtasun * [372]
2005 Veeraraghavan * [378]
2005 Viola [382]
2005 Wang * [385]
2005 Weinberg [393]
2005 Wu * [396]
2005 Xu [401]
2005 Yang [404]
2005 Yang [408]
2005 Yilmaz [410]
2005 Yilmaz [411]
2005 Yu * [412]
2005 Yu [413]
2005 Zhang [414]
2005 Zhao [415]
2005 Zhao [416]
P

Total = 70 4 27 23 16

2006 Agarwal * [8]
2006 Ahmad [13]
2006 Antonini * [19]
2006 Balan [24]
2006 Berclaz [33]
2006 Bissacco [35]
2006 Bray [42]
2006 Buades [46] * *
2006 Cuntoor [72]
2006 Dalal [76]
2006 Eng [102]
2006 Figueroa [106]
2006 Figueroa [107]
2006 Fihl [108]
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more accurate reconstructions of the subject from single or
multiple view images.

Initialization captures prior knowledge of a specific per-
son which can be used to constrain tracking and pose estima-
tion. A priori knowledge used in human motion capture can
be broken into a number of sources: kinematic structure; 3D

shape; color appearance; pose; motion type. In this section,
we review recent research which advances estimation of kine-
matic structure, 3D shape, and appearance. Initialization of
appearance is commonly an integral part of the tracking and
pose estimation and is therefore also considered in conjunc-
tion with specific approaches in Sections 3 and 4.

Table 2 (continued)

Year First author Initialisation Tracking Pose estimation Recognition

Publications 2000–2006 (inclusive)

2006 Fihl * [109]
2006 Han [132]
2006 Heikkila [141]
2006 Howe * [153]
2006 Hu [156]
2006 Huang [161]
2006 Huerta [164]
2006 Jaeggli [174]
2006 Jiang [180]
2006 Khan [195]
2006 Kristensen [202]
2006 Lee [206] *
2006 Lee [207]
2006 Lee [213]
2006 Leichter [216]
2006 Lim [221] *
2006 Liu [223]
2006 Lv [229]
2006 Menier * [233]
2006 Micilotta [236]
2006 Moon [259]
2006 Mori [260] *
2006 Nillius [266]
2006 Parameswaran [279]
2006 Park [282] *
2006 Park [283]
2006 Rahman [295]
2006 Ramanan [297]
2006 Reng [303]
2006 Rius [306]
2006 Roh [313]
2006 Ryoo [318]
2006 Schindler [323]
2006 Shi [330]
2006 Sigal [337]
2006 Sigal [338]
2006 Sminchisescu [341]
2006 Smith [347]
2006 Sundaresan [358]
2006 Taycher [360]
2006 Urtasun [371]
2006 Veeraraghavan [377]
2006 Wang [386]
2006 Wang [392]
2006 Wu * [395]
2006 Wu * [399]
2006 Xiang [400]
2006 Yamamoto [403]
P

Total = 62 7 19 17 19
00–06 Total = 352 28 116 125 83

Papers are ordered first by the year of publication and second by the surname of the first author. Four columns allow the clarification of the contributions
of the papers within the four processes. The location of the reference number (in brackets) indicates the main topic of the work and an asterisk (*) indicates
that the paper also describes work at an interesting level regarding this process.
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2.1. Kinematic structure initialization

The majority of vision-based tracking systems assume a
priori a humanoid kinematic structure comprising a fixed
number of joints with specified degrees-of-freedom. The
kinematic initialization is then limited to estimation of limb
lengths. Commercial marker-based motion capture systems
typically require a fixed sequence of movements which iso-
late individual degrees-of-freedom. The known correspon-
dence between markers and limbs together with
reconstructed 3D marker trajectories during movement
are then used to accurately estimate limb lengths. Hard
constraints on left-right skeletal symmetry are commonly
imposed during estimation. A number of approaches
[26,28,278,361] have addressed initialization of body pose
and limb lengths from manually identified joint locations
in monocular images. Anthropometric constraints between
ratios of limb lengths are imposed to allow estimation of
the kinematic structure up to an unknown scale factor.

Direct estimation of the kinematic structure from
sequences of a moving person has also been investigated.
Krahnstover et al. [200,201] present a method for automat-
ically initializing the upper-body kinematic structure based
on motion segmentation of a sequence of monocular video
images. Song et al. [350] introduce an unsupervised learn-
ing algorithm which uses point feature tracks from clut-
tered monocular video sequences to automatically
construct triangulated models of whole-body kinematics.
Learnt models are then used for tracking of walking
motions from lateral views. These approaches provide
more general solutions to the problem of initializing a kine-
matic model by deriving the structure directly from the
scene.

Methods that derive the kinematic structure from 3D
shape sequences reconstructed from multiple views have
also been proposed. Cheung et al. [59] initialize the kine-
matic structure from the visual-hull of a person moving
each joint independently. A full-skeleton together with
the shape of each body part is obtained by alignment of
the segmented moving body parts with the visual-hull mod-
el in a fixed pose. Menier et al. [233] present an automated
approach to 3D human pose estimation from the medial
axis of the visual-hull. The kinematic structure is initialized
independently at each frame enabling robust tracking.
More general frameworks are presented in [44,65] to esti-
mate the underlying skeletal spine structure from a tempo-
ral sequence of the 3D shape. The spine is estimated from
the shape at each frame and common temporal structures
identified to estimate the underlying structure. This work
demonstrates reconstruction of approximate kinematic
structures for babies, adults, and animals.

Initializing the joint angle limits on the human kinemat-
ic structure is an important problem to constrain motion
estimation to valid postures. Manual specification of joint
angle limits has been common in many motion estimation
algorithms using anthropometric data. This does not take
into account the complex nature of joint limits and cou-

pling between limits for different degrees-of-freedom. To
overcome these limitations recent research has investigated
learning models of joint limits and their correlations.
Anthropometric models for the relationship between arm
joint angles (shoulder, elbow, and wrist) have been used
to provide constraints in visual tracking and 3D upper-
body pose estimation [248,253,262]. Recent research has
investigated the modeling of joint limits from measure-
ments of human motion captured using marker-based sys-
tems [144,145] and from clinical data [252]. This is
demonstrated to improve the performance of human pose
estimation for complex upper-body movement.

Increasingly, human motion capture sequences from
commercial marker-based systems have been used to learn
prior models of human kinematics and specific motions to
provide constraints for subsequent tracking. Similarly
motion capture data-bases [1,2,4] have recently been used
to syntheses image sequences with know 3D pose corre-
spondence to learn a priori the mapping from image to
pose space for reconstruction.

2.2. Shape initialization

A generic humanoid model is used in many video-based
human motion estimation techniques to approximate a
subject’s shape. Representations have used either simple
shape primitives (cylinders, cones, ellipsoids, and super-
quadrics) or a surface (polygonal mesh, sub-division
surface) articulated using the kinematic skeleton [247]. A
number of approaches have been proposed to refine the
generic model shape to approximate a specific person.

In previous research [147] a generic mesh model was
refined based on front and side view silhouettes taken with
a single camera. Texture mapping was then applied to
approximate detailed surface appearance. Recently simul-
taneous capture from multiple calibrated views has been
used [53,289,352] to achieve more accurate shape and
appearance. Plänkers and Fua [289] initialize upper-body
shape by fitting an implicit ellipsoidal metaball representa-
tion to stereo point clouds prior to tracking. Carranza et al.
[53] fit a generic mesh model to multiple view silhouette
images of a person in a fixed pose prior to tracking
whole-body motion. Starck and Hilton [352] reconstruct
whole-body shape and appearance for a person in an arbi-
trary pose by optimizing a generic mesh model with respect
to both silhouette, stereo, and feature correspondence con-
straints in multiple views. These model fitting approaches
provide an accurate parameterized approximation of a per-
son provided the assumed shape of the generic model is a
reasonable initial approximation. Model fitting methods
commonly assume short hair and close fitting clothing
which limits their generality.

The availability of sensors for whole-body 3D scans pro-
vides accurate measurement of surface shape. Techniques to
fit generic humanoid models to the whole-body scans in a
specific pose enable a highly detailed representation of a per-
son’s shape to be parameterized for animation and tracking

98 T.B. Moeslund et al. / Computer Vision and Image Understanding 104 (2006) 90–126
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[14,351]. Allen et al. [14] fit a sub-division surface to multiple
scans of a person in different poses to parameterize the
change in body surface shape with pose. Databases of 3D
scans have also been used to learn statistical models of the
inter-person variation in whole-body shape [15,363]. Recon-
struction of shape from images can then be constrained by
the learnt model to improve performance.

2.3. Appearance initialization

Due to the large intra and inter person variability in
appearance with different clothing, initialization of appear-
ance has commonly been based on the observed image set.
Statistical models of color are commonly used for tracking,
see Section 3.3. Initialization of the detailed surface
appearance for model-based pose estimation has also used
texture maps derived from multiple view images [53,352]. A
cost function evaluating the difference in appearance
between the projected model and observed images is then
used in pose estimation.

Sidenbladh and Black [332,333] address modeling the
likelihood of image observations for different body parts.
They learn the statistics of appearance and motion based
on filter responses for a set of training examples. In a relat-
ed approach, Roberts et al. [309] learn the likelihood of
body part color appearance using multimodal histograms
on a 3D surface model. Results are presented for 2D track-
ing of upper-body and walking motions in cluttered scenes.

A recent trend has been towards the learning of body part
detectors to identify possible locations for body parts which
are then combined probabilistically to locate people
[235,296,310,314], see Section 4.1.1. Initialization of such
models requires a large training corpus of both positive
and negative training examples for different body parts.
Approaches such as AdaBoost have been successfully used
to learn body part detectors such as the face [380], hands,
arms, legs, and torso [235,310]. Alternatively, Ramanan
et al. [296] detect key-frame poses in walking sequences
and initialize a local appearance model to detect body parts
at intermediate frames.

Lim et al. [221] address the problem of changing appear-
ance due to motion by modeling the dynamics of the
appearance for walking humans. This is done by mapping
the pixels inside a bounding box to a low dimensionality
space (only 3D) using a nonlinear Local Linear Embedding
algorithm. In this space the temporal continuity of the
appearance is preserved, which allows for learning a
dynamic model of the appearance for walking humans.
This model can then be used to predict not only the posi-
tion and 2D shape of a walking human, but also the
appearance.

The initialization of models which accurately represent
the change in appearance over time due to creases in cloth-
ing, hair, and change in body shape with movement
remains an open problem. Recent introduction of robust
local body part detectors provides a potential solution for
tracking and pose estimation.

2.4. Discussion of advances in model initialization

Initialization of shape, appearance, and pose remains an
import step to automate the process of human motion cap-
ture and analysis. As illustrated in this review significant
advances have been made towards automatic solutions.
The problem of initializing the kinematic structure and
pose from feature tracks for monocular sequences has been
addressed [350]. A number of researchers have presented
methods for initializing the kinematic structure from multi-
ple view image sequences using an intermediate volumetric
reconstruction [59,233]. These approaches provide a solu-
tion to the problem of automatic kinematic model initiali-
zation for human pose estimation. Learning approaches
[145] and anthropometric models [252] have been presented
to initialize the joint angle limits on the kinematic structure
to constrain tracking and pose estimation.

Over the past 5 years there has been substantial research
in the automatic initialization of model shape from multi-
ple view images [53,59,289,352]. These approaches recon-
struct an articulated model which approximates the shape
of a specific person providing the basis for improved accu-
racy in tracking. Recent research has also started to
address the modeling of changes in human body shape dur-
ing movement [14]. Similarly multiple view reconstruction
techniques have allowed the automatic initialization of
model appearance to that of a specific individual.

Initialization of appearance models for monocular
tracking and pose estimation remains an open problem.
A number of approaches have been proposed for initializa-
tion of appearance based on image patch exemplars or col-
or mixture models. Recent work on body part detectors has
exploited supervised learning approaches to discriminate
individual body part appearance from background
[296,310,314]. Only limited research has addressed the
problem of modeling changes in a person’s appearance
during movement. The problem of fully automatic initiali-
zation of model kinematics, shape, and appearance for
human pose estimation from monocular image sequences
remains open for future research.

3. Tracking

Since 2000 tracking algorithms have focused primarily
on surveillance applications leading to advances in areas
such as outdoor tracking, tracking through occlusion,
and detection of humans in still images. In this section
we review recent advances in these areas as well as more
general tracking problems.

The notion of tracking in visual analysis of human
motion is used differently throughout the literature. Here
we define it as consisting of two processes: (1) figure-ground

segmentation and (2) temporal correspondences. The latter,
temporal correspondences, is the process of associating
the detected humans in the current frame with those in
the previous frames, providing temporal trajectories
through the state space. Recent advances are mainly due
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to processing more natural scenes where multiple people
and occlusions are present.

Figure-ground segmentation is the process of separating
the objects of interest (humans) from the rest of the image
(the background). Methods for figure-ground segmenta-
tion are often applied as the first step in many systems
and therefore a crucial process. Recent advances are mostly
a result of expanding existing methods. We categorize these
methods in accordance with the type of image measure-
ments the segmentation is based on: motion, appearance,
shape, or depth data. Before describing these we first
review recent advances in background subtraction as this
has become the initial step in many tracking algorithms.

3.1. Background subtraction

Up until the late 90s background subtraction was
known as a powerful preprocessing step but only in con-
trolled indoor environments. In 1998, Stauffer and Grim-
son [354] presented the idea of representing each pixel by
a mixture of Gaussians (MoG) and updating each pixel
with new Gaussians during run-time. This allows back-
ground subtraction to be used in outdoor environments.
Normally the updating was done recursively, which can
model slow changes in a scene, but not rapid changes like
clouds. The method by Stauffer and Grimson has today
become the standard of background subtraction. However,
since 1998 a number of advances have been seen which can
be divided into background representation, classification,
background updating, and background initialization.

3.1.1. Background representation

The MoG representation can be in RGB space, but also
other color spaces can be applied, see [202] for an overview.
Often a representation where the color and intensities are
separated is applied, e.g., YUV [394], HSV [69], and nor-
malized RGB [232], since this allows for detecting shad-
ow-pixels wrongly classified as object-pixels [293]. Using
a MoG in a 3D color space corresponds to ellipsoids or
spheres (depending on the assumptions on the covariance
matrix) of the Gaussian representations [232,354,421].
Other geometric representations are truncated cylinders
[196] and truncated cones [108].

Conceptually different representations have also been
developed. Elgammal et al. [96] use a kernel-based
approach where they represent a background pixel by the
individual pixels of the last N frames. Haritaoglu et al.
[138] represent the minimum and maximum value together
with the maximum allowed change of the value in two con-
secutive frames. Heikkila and Pietikainen [141] represent
each background pixel by a bit sequence, where each bit
reflects whether the value of a neighboring pixel is above
or below the pixel of interest, i.e., a texture operator. This
makes the background model invariant to monotonic illu-
mination changes. Oliver et al. [270] also use a pixel’s
neighbors to represent it. They apply an eigenspace repre-
sentation of the background and detect new objects by

comparing the input image with an image reconstructed
via the eigenspace.

Eng et al. [101,102] divide a background model learnt
over time into a number of non-overlapping blocks. The
pixels within each block are grouped into at most three
classes according to homogeneity. The means of these clas-
ses are then the representation of the background for this
block, i.e., a spatio-temporal representation. Heikkila and
Pietikainen have also applied their texture operator
for a spatio-temporal block-based (overlapping blocks)
background segmentation [140]. Other spatio-temporal
approaches are [256] and [423] where the background is
represented by a predicted region found by an autoregres-
sive process.

The choice of representation is not only dependant on
the accuracy but also on the speed of the implementation
and the application. This makes sense since the overall
accuracy of background subtraction is a combination of
representation, classification, updating, and initialization.
For example, Cucchiara et al. [69] use only one value to
represent each background pixel, but still good results
(and speed) can be obtained due to advanced classification
and updating. It should however be noted that the MoG
representation is by far the most widely used method.2

For scenes with dynamic background the MoG representa-
tion does not suffice and methods directly aimed at model-
ing dynamic background should be applied, see e.g.,
[256,327, and 423].

3.1.2. Classification
A number of false positives and negatives will often

be present after a background subtraction, for example
due to shadows [293]. Using standard filtering techniques
based on connected component analysis, size, median fil-
ter, morphology, and proximity can improve the result
[69,96,129,232,408,420]. Alternatively, the fact that
neighboring pixels are likely to be both foreground or

background can be used in classification. Markov Ran-
dom fields have been applied to implement this idea
[323,327].

Recent methods have tried to directly identify the incor-
rect pixels and use classifiers to separate the pixels into a
number of sub-classes: unchanged background, changes
due to auto iris, shadows, highlights, moving object, cast
shadow from moving object, ghost object (false positive),
ghost shadow, etc. [57,69,149]. Classifiers have been based
on color, gradients [232], flow information [69], and hyster-
esis thresholding [101].

3.1.3. Background updating

In outdoor scenes, in particular, the value of a back-
ground pixel will change over time and an update mech-
anism is therefore required. The slow changes in the
scene can be updated recursively by including the current

2 See [208,424] for optimizations of the MoG representation.
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pixel value into the model as a weighted combination
[69,96,232,354]. A different approach is to measure the
overall average change in the scene compared to the
expected background and use this to update the model
[108,408]. If no real-time requirements are present, both
past and future values can be used to update the back-
ground [106]. In general, for a good model update only
pixels classified as unchanged background should be
updated.

Rapid changes in the scene are accommodated by add-
ing a new mode to the model. For the MoG model a new
mode is a new Gaussian distribution, which is initiated
whenever a non-background pixel is detected. The more
pixels (over time) that support this distribution the more
weight it will have. A similar approach is seen in
[108,196] where the background model, denoted a code-
book, for each pixel is represented by a number of code-
words (cylinders [196] or cones [108] in RGB-space).
During run-time each foreground pixel creates a new code-
word. A codeword not having any pixels assigned to it for a
certain number of frames is eliminated. A similar idea can
be found in [140,141].

3.1.4. Background initialization

A background model needs to be learned during an ini-
tialization phase. Earlier approaches assumed that no mov-
ing objects are present in a number of consecutive frames
and then learn the model parameters in this period. How-
ever, in real scenarios this assumption will be invalid and
recent methods have therefore focused on initialization in
the presence of moving objects.

In the MoG representation moving objects can to some
extend be accepted during initialization since each fore-
ground object will be represented by its own distribution
which is likely to have a low weight. However, this errone-
ous distribution is likely to produce false positives in the
classification process. A different approach is to find only
pixels that are true background pixels and then only apply
these for initialization. This can be done using a temporal
median filter if less than 50% of the values belong to fore-
ground objects [101,119,138]. Eng et al. [101] combine this
with a skin detector to find and remove humans from the
training images.

Recent alternatives first divide the pixels in the ini-
tialization phase into temporal subintervals with similar
values. Second, the ’’best’’ subinterval belonging to the
background is found as the subinterval with the mini-
mum average motion (measured by optical flow) [130]
or the subinterval with the maximum ratio between
the number of samples in the subinterval and their var-
iance [385,386]. The codeword method mentioned above
uses a temporal filter after the initialization phase to
eliminate any codeword that has not recurred for a long
period of time [196]. A similar approach has used in
[140,141].

For comparative studies among some of the different
background subtraction methods see [55,61,385,386].

3.2. Motion-based segmentation

Motion-based figure-ground segmentation is based on
the notion that differences in consecutive images arise from
moving humans, i.e., by finding the motion you find the
human. The motion is measured using either flow or image
differencing.

Sidenbladh [331] calculates optical flow for a large num-
ber of image windows each containing a walking human. A
support vector machine (SVM) is used to detect walking
humans in video. Optical flow can be noisy and instead
image flow can be measured using higher level entities.
For example, Gonzalez et al. [122] track KLT-features to
obtain flow vectors, Sangi et al. [320] extract flow vectors
from displacements of pixel-blocks, and Bradski and Davis
[40] find flow vectors as gradients in motion history images
(MHI) [80].

Image differencing adapts quickly to changes in the
scene, but pixels from a human that has not moved or
are similar to their neighbors are not detected. Therefore,
an improved version is to use three consecutive images
[66,138,185]. A different type of image differencing is used
by Viola et al. [382]. They apply the principle of their novel
face detector [380], where simple features are combined in a
cascade of progressively more advanced classifiers. A rect-
angle of pixels in the current image is compared to the cor-
responding rectangle in the previous image. This is done by
shifting the rectangle in the current image up, down, left,
and right. Image differencing is then preformed and the
lower the energy in the output the higher the probability
that the human has actually moved (shifted) in this direc-
tion. The output of these operations is used to build a
person detector, which is trained using AdaBoost.

3.3. Appearance-based segmentation

Segmentation based on the appearance of the human is
built on the idea that (1) the appearance of human and
background is different and (2) the appearance of individ-
uals are different. The approaches work by building an
appearance model of each human and then either building
appearance models of the segmented foreground objects in
the current image and comparing them with the predicted
models, or by directly segmenting the pixels in the current
image that belong to each model. Some of these methods
are independent on the temporal context, meaning that
the methods apply a general appearance model of a human,
as opposed to methods where the appearance model of the
human is learned/updated based on previous images in the
current sequence.

3.3.1. Temporal context-free

Temporal context-free methods are used to detect
humans in a still image [254], to detect humans entering a
scene [269], or to index images in databases [275]. Advances
are mostly on using massive amount of training data for
learning good classifiers. For example, Okuma et al. [269]
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use 6000 images to train an Adaboost-based classifier.
Other examples are using DCT coefficients [275], using par-
tial-occlusion handling body-part detectors [254], (see also
Section 4.1.1), or the block-based method by Utsumi and
Tetsutani [374]. In [374] the image is divided into a number
of blocks and the mean and covariance matrix of the inten-
sities are calculated for each block. A distance matrix is
constructed where an entry represents the generalized
Mahalanobis distance between two blocks. The detection
is now based on the fact that for non-human images the
distances between blocks in the proximity will be larger
than for images containing a human.

Common for these methods is that the human is detect-
ed as a box (normally a bounding box) and clutter in the
background will therefore have an effect on the results.
Furthermore, as the methods usually represent the human
as one entity, as opposed to a number of sub-entities,
occlusion will in general effect the methods strongly. Dras-
tic illumination changes will also effect the methods since
the models are general and do not adapt to the current
scene.

3.3.2. Temporal context

Temporal context refers to methods where a model
which is learned and updated in previous images is used
to either detect foreground pixels or to classify foreground
pixels to a particular human being tracked. The methods
either operate at pixel level or region level. At pixel level
the likelihood of each (foreground) pixel belonging to a
human model is calculated. The region level is when a
region in the image, such as a bounding box, is compared
to an appearance model of the humans that are predicted
to be present in the current frame, i.e., the probability that
a region in an image corresponds to a particular human
model. Color-based appearance models have recently
received attention leading to advances allowing tracking
in outdoor scenes with partial occlusion. This has led to
a need for models that can represent the differences
between individuals even during partial occlusion.

In many systems the color of a human is represented as
either a color histogram [67,155,232,269,401,421] or a
MoG [187,194,316,404].3 Color histograms are normally
compared using the Bhattacharyya distance, which can
be improved by weighting pixels close to the center of the
human higher than those close to the border [67,421]. In
Zhao [421] the similarity is combined with the dissimilarity
with respect to the color histogram of the background.
MoG representations are normally compared using the
Mahalanobis distance, which can be evaluated efficiently
by using only one Gaussian [187] and assuming indepen-
dence between color channels [70]. Alternatively, only the
mean can be used [404].

Representing the entire human by just one color model
is often too coarse a representation even though the model
contains multiple modes. Recent advances are therefore on
including spatial information. For example using a Corre-
logram, which is a co-occurrence matrix that expresses the
probability of two different colored pixels being found at a
certain distance form each other [52,162]. Another way of
adding spatial information is to divide the human into a
number of sub-regions and represent each sub-region with
either a color histogram or a MoG [244,269,316,404]. Hu
et al. [155] use an adaptive approach to obtain three sub-re-
gions representing the head, torso, and legs. A more gener-
al approach is to model the human as a number of blobs
where each blob is a connected group of pixels having a
similar color [194,282]. Grouping the blobs together tem-
porally and spatially into an entire human requires some
bookkeeping, but a rough human model can assists as seen
in [282].

As mentioned in Section 2—Model initialization—ap-
pearance-based models able to handle changes over time
remains an open issue. On one hand a model should adapt
quickly to changes, but on the other hand long term tem-
poral consistency is required, e.g., to handle occlusions.
The KLT-tracker [329] to some degree handles this dilem-
ma by only updating the model by data from the previous
image as long as it is not too different from the initial mod-
el. A more general framework is suggested by Jepson et al.
[178]. They update each pixel in their appearance model by
a weighted combination of a slowly changing model, a fast
changing model, and a noise model. The weights are updat-
ed in accordance with the support of the different models in
the current image.

3.4. Shape-based segmentation

The shape of a human is often very different from the
shape of other objects in a scene. Shape-based detection
of humans can therefore be a powerful cue. As opposed
to the appearance-based models, the shapes of individuals
are often very similar. Hence, shape-based methods applied
to tracking only involves simple correspondences. The
advances are first of all to allow human detection and
tracking in uncontrolled environments. Due to the recent
advances in background subtraction reliable silhouette out-
lines can describe the shape of the humans in the image
sequence. Furthermore, advances in representations and
segmentation methods of humans in still images have also
been reported. As was done for the appearance-based
methods, we divide the shape-based methods into those
not using the temporal context and those using the context.

3.4.1. Temporal context-free

Zhao and Thorpe [417] use depth data to extract the sil-
houettes of individuals in the image. A neural network is
trained on upright humans and used to verify whether
the extracted silhouettes actually originate from humans
or not. To make the method more robust the gradients

3 According to McKenna et al. [232] MoG is preferred with small sample
sets and many possible colors, whereas a color histogram is preferred
when many color samples are present in a coarsely quantified color space.
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of the outline of a silhouette are used to represent the shape
of the human. Leibe et al. [215] learn the outlines of walk-
ing humans and store them as a number of templates. Each
of these are matched with an edge version of the input
image over different scales using Chamfer matching. The
results are combined with the probability of a person being
present, which is measured by comparing small learned
image patches of the appearance of humans and their
occurrence distribution. Wu and Yu [399] learn a prior
shape model for human edges and represent it as a Boltz-
mann distribution in a Markov Field. The detector search-
es for different locations, scales, and rotations and is
implemented using a Particle Filter. Dalal and Triggs [75]
use an SVM to detect humans in a window of pixels. The
input is a set of features encoding the shape of a human.
The features come from using a spatially arranged set of
HOG (histogram of oriented gradients) descriptors. The
HOG descriptor operates by dividing an image region into
a number of cells. For each cell a 1D histogram of gradient
directions over the pixels in the cell is calculated. In [76] the
work is extended by including motion histograms. This
allows for detecting humans even when the camera and/
or background is moving. HOGs are related to Shape Con-
texts [30] and SIFT (scale invariant feature transformation)
[224]. Zhao and Davis [416] learn a hierarchy of silhouette
templates for the upper body. The outline of the silhouettes
in the templates is used to detect sitting humans in a frame.
This is done using Chamfer matching at different scales
together with a color-based detector that is updated
iteratively.

3.4.2. Temporal context

When the temporal context is taken into consideration
shape-based methods can be applied to track individuals
over time. In case of temporal smoothness the shape in
the previous frame can be used to find the human in
the current frame. Haritaoglu et al. [138] perform a bina-
ry edge correlation between the outlines of the silhouettes
in the last frame and the immediate surroundings in the
current image. Davis et al. [84] use a point distribution
model (PDM) to represent the outline of the human.
The most likely configurations of the outline from the
previous frame are used to predict the location in the
current frame using a particle filter. Predictions are eval-
uated by comparing the edges of the outline with those
in the image. A similar approach is seen in [198] where
the active shape model is applied to find a fit in the cur-
rent frame. Atsushi et al. [21] model the pose of the
human in the previous frame by an ellipse and predict
nine possible poses of the human in to the current frame.
Each of these is correlated with the silhouettes in the
current image in order to define the current pose of
the human. Krüger et al. [204] correlate the extracted
silhouette with a learned hierarchy of silhouettes of
walking persons. At run-time a Bayesian tracking frame-
work concurrently estimates the translation, scale, and
type of silhouette.

In situations of partial occlusion the shape-based meth-
ods just described often fail due to lack of global shape
information. Advances therefore include detection of
humans based on only a few parts of the overall shape.
In the work by Wu and Nevatia [396] four different (body)
parts are detected: full-body, head-shoulder, torso, and
legs. For each part a detector is trained using a boosting
classifier together with edgelets (small connected chains
of edge pixels) which are quantified into different orienta-
tions, see also Section 4.1.1. When people group together
the occlusion often becomes severe and the only reliably
shape information is the head or head-shoulder profile.
While this work is limited to frontal/rear views, extended
work also handles side views [395].

In [138,156,406] the head candidates are found by ana-
lyzing the silhouette boundary and the vertical projected
histogram of the silhouette. A similar approach is seen in
[419] except that also an edge-based method to find the
head-shoulder profile inside silhouettes is applied.

3.5. Depth-based segmentation

Figure-ground segmentation using depth data are based
on the idea that the human stands out in a 3D environ-
ment. Methods are either-based directly on estimated 3D
data for the scene [135,139,171,222,407] or indirectly by
combining different camera views after features have been
extracted [172,243,244,405]. Advances are mainly due to
faster computers allowing for handling multiple camera
inputs.

Background subtraction can be sensitive to lighting
changes. Therefore a depth-based approach can be taken
where the background is modeled as a depth model and
compared to estimated depth data for each incoming frame
in order to segment the foreground. A real-time dense ste-
reo algorithm is, however, still problematic unless special
hardware is applied [222]. An approach to circumvent this
is the work by Ivanov et al. [171] where an online depth
map is not required. Instead the mapping between pixels
in two cameras is learnt. This allows for an online compar-
ison between associated pixels (defined by the mapping) in
the two cameras. Detection is now performed based on the
assumption that the color and intensity are similar for the
pixels if and only if they depict the background. In [222]
the merits and drawbacks of this approach are studied in
detail.

Other advances in human detection based on depth data
include the work by Haritaoglu et al. [135] where depth
data produced by ceiling-mounted cameras are projected
to the ground-plane. Here humans are located by looking
for a 3D head-shoulder profile. Similar approaches are seen
in [139,407] except for the camera placement and that [139]
apply voxels as opposed to 3D points.

Mittal and Davis [243,244] detect humans using an
appearance-based method in each camera view. The center
of each detected human is combined with those found in
another image using region-based stereo constrained by
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the epipolar geometry. The resulting 3D points are project-
ed to the ground-plane and represented probabilistically
using Gaussian kernels and an occlusion likelihood. In
Yang et al. [405] silhouettes from different cameras are
combined into the visual hull. The incorrect interpretations
are pruned using a size criterion as well as the temporal his-
tory. Iwase and Saito [172] apply multiple cameras to
detect and track multiple people. In each camera the feet
of each person are detected using background subtraction
and knowledge of the environment. For each camera all
detected feet are mapped to a virtual ground-plane where
an iterative procedure resolves ambiguities. A similar
approach can be found in [195].

3.6. Temporal correspondences

One of the primary tasks of a tracking algorithm is to
find the temporal correspondences. That is, given the state
of N persons in the previous frame(s) and the current input
frame(s), what are the states of the same persons in the cur-
rent frame(s). Here the state is mainly the image position of
a person, but can contain other attributes, e.g., 3D posi-
tion, color, and shape.

Previously tracking algorithms were mostly tested in
controlled environments and with only a few people pres-
ent in the scene. Recently, algorithms have addressed more
natural outdoor scenarios where multiple people and occlu-
sions are present. One problem is to have better figure-
ground segmentation as discussed above. Another equally
important problem is how to handle multiple people that
might occlude each other. In this section we discuss
advances related to temporal correspondences before and

after occlusion and temporal correspondences during

occlusion.

3.6.1. Temporal correspondences before and after occlusion

A model of each individual must be constructed before
any tracking can commence. Recent methods are aiming
at doing this automatically. One way is to look for (new)
large foreground objects possible near the boundaries4

[18,19,138,232,316]. Alternatively, a new person can be
defined as a foreground object detected far from any pre-
dictions [52]. Khan and Shah [194] fit 1D Gaussians to
the foreground pixels projected to the horizontal axis. If
the number of good fits is higher than the predicted number
of people in the scene then a new person has entered the
scene.

When the tracking has commenced the problem is to
find the temporal correspondences between predicted and
measured states. This has recently been approached using
a correspondence matrix, which has the predicted objects
in one direction and the measured objects in the other
direction. For each entry in the matrix a distance between

predicted and measured object is calculated. This gives the
likelihood that a predicted and measured object are the
same. By analyzing the columns and rows the following
situations can be hypothesized: new object, object lost,
object match, split situation, and merge situation. In case
of for example merge and split situations the matrix
can not be resolved directly and ad hoc methods are
applied. For example by analyzing the motion vectors
and the area (change) of each foreground object
[52,70,129,232,395,401,408].

Alternatively, global optimizations can also be applied.
Polat et al. [290] use a Multiple Hypothesis Tracker to con-
struct different hypotheses which each explains all the pre-
dictions and measurements, and chooses the hypothesis
which is most likely. To prune the combinatorial number
of different hypotheses smoothness constraints on the
motion trajectories are introduced. If the total number of
people in the scene is known in advance the pruning
becomes less difficult [29,155]. Another global optimization
can be seen in [345,421] where a Particle Filter [169] is
applied and where each state is a multi-object configuration
(hypothesis). Objects are allowed to enter and exit the scene
meaning that the number of elements in the state vector can
change. To handle this the particle filter is enhanced by a
trans-dimensional Markov chain Monte Carlo approach
[126]. This allows new objects to enter and other objects
to leave the scene, i.e., the dimensionality of the state space
may change. In the work by Li et al. [219] a tree-based
global optimization for correspondence between multiple
objects across multiple views is presented. This approach
is used for real-time tracking of hand, head, and feet for
whole-body pose estimation. Antonini et al. [19] learn
behavioral models for pedestrians’ preferences regarding
acceleration and direction. These models are used to find
globally coherent trajectories.

3.6.2. Temporal correspondences during occlusion

Tracking during occlusion was not addressed in previ-
ous work, instead the track of the group was used to
update the states of the individuals. However, this makes
it impossible to update the models of the individuals, which
can result in unreliable tracking after the group splits up.
Furthermore, interactions between humans during occlu-
sions is difficult to analyze when they are represented as
one foreground object. Therefore, the problem of finding
the correspondences during occlusion has been investigated
recently.

In some recent systems the first task is to actually detect
that an occlusion is present. This can be done using the cor-
responding matrix mentioned above or as in [52,194,316].
Khan and Shah [194] detect a non-occlusion situation as
a situation when the detected foreground objects are far
from each other. Capellades et al. [52] define a merge as
a situation where the total number of foreground objects
has decreased and where two or more foreground objects
from the previous frame overlap with one foreground
object in the current frame. In the work by Roth et al.

4 Similar approaches can be used to detect when people are leaving the
scene, see e.g., [18,129].
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[316] a merge is detected as one of eight different types of
occlusion based on the depth ordering and the layout of
the bounding boxes. This allows for only using the reliable
parts of the bounding box to update the position of the
human.

Different approaches for assigning pixels to individuals
during occlusion have been reported in recent publications.
A local approach is to assign each pixel to the most likely
predicted model using a probabilistic method [194,282]. A
local approach allows for bypassing the occlusion problem
but it is also sensitive to noise and therefore often com-
bined with some post-processing to reassign wrongly clas-
sified pixels. Global approaches try to classify pixels
based on for example the assumption that people in a
group are standing side by side with respect to the camera.
This assumption allows for defining vertical dividers
between the individuals based on the positions of their
heads. Foreground pixels are then assigned to individuals
based on these dividers [137,401,406]. When a certain depth
ordering is present in the group the assumption fails.

In the work by McKenna et al. [232] the depth ordering
is found explicitly. During occlusion the likelihood of each
pixel in the foreground object belonging to a person is cal-
culated using Bayes rule. The posteriors for each person are
added to obtain an overall probability of each person.
These probabilities are then used to define the fraction of
each person that is visible. This is denoted a visibility index
and can be applied to find the depth ordering. In [316] the
depth ordering is based on assuming a planar floor. This
will result in the closest object to the camera having the
highest vertically coordinate. Xu and Puig [401] generalize
this idea by using projective geometry to find the line in the
image that corresponds to the ‘‘horizon line’’ in the 3D
scene. The object closest to the camera is found as the
object closest to this horizontal line.

3.7. Discussion of advances human tracking

Advances in figure-ground segmentation have to a large
extent been motivated by the increased focus on surveil-
lance applications. For example, in order to have fully
autonomous systems operating in uncontrolled environ-
ments the segmentation methods have to be adaptive. This
has to some extent been achieved within background sub-
traction where analysis of video sequences of several hours
has been reported [108]. However, for 24 h operation spe-
cial cameras (and algorithms) are required. Work in this
direction has started [66,82] but no one has so far been able
to report a truly autonomous system. Furthermore, in most
surveillance applications multiple cameras are required to
cover the scene of interest at an acceptable resolution. Sys-
tems for self-calibrating and tracking across different cam-
eras are being investigated [21,187,193,369], but again, no
fully autonomous system has been reported.

Another advance in segmentation is to apply spatial
information in the color-based appearance models, for
example by dividing each foreground object into a number

of regions each having a color representation [155,194,
244,269,282,316,404] or by correlograms [52,162]. This
has allowed for relatively reliable detection and tracking
of people even when multiple people are present with occlu-
sion. Even an accurate appearance model might fail when
the lighting changes are significant.

The recent focus on natural scenes has also led to
advances within methods for temporal correspondence,
especially handling the occlusion problem. Advances are
mainly due to the use of probabilistic methods, for example
to segment pixels to individuals during occlusion
[194,232,282,285] and also to handle multiple hypotheses
and uncertainties using stochastic sampling methods
[155,269,290,345,404,421]. In fact, concurrent segmenta-
tion and tracking can be handled by stochastic sampling
methods. It is expected that future work will be based on
this framework since it unifies segmentation and tracking
and the associated uncertainties.

The use of common benchmark data has begun to
underpin progress. As has been seen in the speech commu-
nity for many years and lately in the face recognition com-
munity, widely acceptable benchmark data can help to
focus research. Within human detection a few recent
benchmark data sets have been reported [75,254]. Within
tracking in general the PETS and VS-PETS data sets [5]
have been applied in many systems.

4. Pose estimation

Pose estimation refers to the process of estimating the
configuration of the underlying kinematic or skeletal artic-
ulation structure of a person. This process may be an inte-
gral part of the tracking process as in model-based
analysis-by-synthesis approaches or may be performed
directly from observations on a per-frame basis. The previ-
ous survey [247] separated pose estimation algorithms into
three categories based on their use of a prior human model:

Model-free. This class covers methods where there is no
explicit a priori model. Previous methods in this class
take a bottom up approach to tracking and labeling of
body parts in 2D [394] or direct mapping from 2D
sequences of image observations to 3D pose [41].
Indirect model use. In this class methods use an a priori
model in pose estimation as a reference or look-up table
to guide the interpretation of measured data. Previous
examples include human body part labeling using aspect
ratios between limbs [49] or pose recognition [136].
Direct model use. This class uses an explicit 3D geomet-
ric representation of human shape and kinematic struc-
ture to reconstruct pose. The majority of approaches
employ an analysis-by-synthesis methodology to opti-
mize the similarity between the model projection and
observed images [148,383].

In this section we identify recent contributions and
advances in each category of pose estimation algorithms.
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A number of trends can be identified from the literature.
Three research directions which have each received consid-
erable attention are: the introduction of probabilistic
approaches to detect body parts and assemble part config-
urations in the model-free category; the incorporation of
learnt motion models in pose estimation to constrain the
recovered 3D human motion; and the use of stochastic
sampling techniques in model-based analysis-by-synthesis
to improve robustness of 3D pose estimation.

Two important distinctions relating to the difficulty of
the pose estimation problem are identified in this analysis:
pose estimation from single vs. multiple view images; and
2D pose estimation in the image plane vs. full 3D pose
reconstruction. The most difficult and ill-posed problem
is the recovery of full 3D pose from single view images
towards which initial steps have been made. There has also
been substantial research addressing the problems of 2D
pose estimation from single view and 3D pose estimation
from multiple views. For example recent advances have
demonstrated 2D pose estimation in complex natural
scenes such as film footage.

4.1. Model free

A recent trend to overcome limitations of tracking over
long sequences has been the investigation of direct pose
detection on individual image frames. Two approaches
have been investigated which fall into this model-free pose
estimation category: probabilistic assemblies of parts where
individual body parts are first detected and then assembled
to estimate the 2D pose; and example-based methods which
directly learn the mapping from 2D image space to 3D
model space.

4.1.1. Probabilistic assemblies of parts

Probabilistic assemblies of parts have been introduced
for direct bottom-up 2D pose estimation by first detecting
likely locations of body parts and then assembling these to
obtain the configuration which best matches the observa-
tions. A potential advantage of detection over tracking is
that the pose can be estimated independently at each frame,
allowing pose estimation for rapid movements. Temporal
information may be incorporated to estimate consistent
pose configurations over sequences. Forsythe and Fleck
[110] introduced the notion of ‘body plans’ to represent
people or animals as a structured assembly of parts learnt
from images. Following this direction [104,167,168] used
pictorial structures to estimate 2D body part configura-
tions from image sequences. Combinations of body part
detectors have recently been used to address the related
problem of locating multiple people in cluttered scenes with
partial occlusion [254,396], see Section 3.

Probabilistic assemblies of body part detectors (face,
hands, arms, legs, and torso) have been investigated for
bottom up estimation of whole-body 2D pose in individual
frames or sequences [235,296,310,314]. Individual body
parts are detected using 2D shape [310], SVM classifiers

[314], AdaBoost [235], and locally initialized appearance
models [296]. Mikolajczyk et al. [240] introduced probabi-
listic assemblies of robust AdaBoost body part detectors to
locate people in images providing a coarse 2D localization.
The probabilistic assembly of parts models the joint likeli-
hood of a body part configuration. In [235] this approach is
extended to whole-body 2D pose estimation in frontal
images using RANSAC to assemble body part configura-
tions with prior pose constraints. Ramanan et al. [296]
present a related approach where lateral views of a ‘scis-
sor-leg’ pose for a person walking or running are detected
from film footage. Detected poses are then used as key-
frames to initialize a local appearance model for body part
detection and 2D pose estimation at intermediate frames.

Recent work has also introduced approaches for 2D
pose estimation from single images. Ren et al. [302] use
pairwise constraints between body parts to assemble body
part detections into 2D pose configurations. Ramanan
et al. [297] learn a global body part configuration model
based on conditional random fields to simultaneously
detect all body parts. Pairwise constraints include aspect
ratio, scale, appearance, orientation, and connectivity.
Hua et al. [158] present an approach to 2D pose estimation
from a single image using bottom-up feature cues together
with a Markov network to model part configurations. Both
of these approaches demonstrate impressive results for
pose estimation in cluttered scenes such as sports images.

An important contribution of approaches based on the
probabilistic assembly of parts is 2D pose estimation in
cluttered natural scenes from a single view. This overcomes
limitations of many previous pose estimation methods
which require structured scenes, accurate prior models or
multiple views.

4.1.2. Example-based methods

A number of example-based methods for human pose
estimation have been proposed which compare the
observed image with a database of samples. Brand [41]
used a hidden Markov model (HMM) to represent the
mapping from 2D silhouette sequences in image space to
skeletal motion in 3D pose space. In this work the mapping
for specific motion sequences was learnt using rendered sil-
houette images of a humanoid model. The HMM was used
to estimate the most likely 3D pose sequence from an
observed 2D silhouette sequence for a specific view. Simi-
larly, Rosales et al. [294,315] learn a mapping from visual
features of a segmented person to static pose using neural
networks. This representation allows 3D pose estimation
invariant to speed and direction of movement. Viewpoint
invariant representation of the mapping from image to
pose is investigated in [272].

To overcome limitations of tracking researchers have
investigated example-based approaches which directly
lookup the mapping from silhouettes to 3D pose
[6,152,326,340]. Howe [152] uses a direct silhouette lookup
using Chamfer distance to select candidate poses together
with a Markov chain for temporal propagation for 3D
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pose estimation of walking and dancing. Shakhnarovich
et al. [326] present an example-based approach for view-
point invariant pose estimation of upper-body 3D pose
from a single image. Parameter-sensitive hashing is used
to represent the mapping between observed segmented
images from multiple views and the corresponding 3D
pose. Grauman et al. [125] learn a probabilistic representa-
tion of the mapping from multiple view silhouette contours
to whole-body 3D joint locations. Pose reconstruction is
demonstrated for close-up images of a walking person from
multiple or single views. Similarly, Elgammal and Lee [98]
learn multiple view-dependent mapping from silhouettes to
3D pose for walking actions. Agarwal and Triggs [6,8] pre-
sented an example-based approach for 3D pose estimation
from single view image sequences. Nonlinear regression is
used to learn the mapping from silhouette shape descrip-
tors to 3D pose. Results demonstrate reconstruction of
long sequences of walking motions with turns from monoc-
ular video.

Example-based approaches represent the mapping
between image and pose space providing a powerful mech-
anism for directly estimating 3D pose. Commonly these
approaches exploit rendering of motion capture data to
provide training examples with known 3D pose. A limita-
tion of current example-based approaches is the restriction
to the poses or motions used in training. Extension to a
wider vocabulary of movements may introduce ambiguities
in the mapping.

4.2. Indirect model use

A number of researchers have investigated direct
reconstruction of both model shape and motion from
the visual-hull [59,237,238] without a prior model. Mikic
et al. [237,238] present an integrated system for auto-
mated recovery of both a human body model and
motion from multiple view image sequences. Model
acquisition is based on a hierarchical rule-based
approach to body part localization and labelling. Prior
knowledge of body part shape, relative size, and config-
uration is used to segment the visual-hull. An extended
Kalman filter is then used for human motion recon-
struction between frames. A voxel labelling procedure
is used to allow large inter-frame movements. Cheung
et al. [59] first reconstruct a model of the kinematic
structure, shape, and appearance of a person and then
use this to estimate the 3D movement. Tracking is per-
formed by hierarchically matching the approximate
body model to the visual-hull using color matching
along the silhouette boundary edge.

An alternative approach based on full 3D-to-3D non-
rigid surface matching using spherical mapping is presented
in [353]. Alignment of a skeletal model with the first frame
allows the 3D motion to be recovered from the non-rigid
surface motion. Results of these approaches demonstrate
3D human pose estimation for rapid movement of subjects
wearing tight clothing.

These approaches exploit scene reconstruction from
multiple views to directly recover both shape and motion.
This approach is suitable for multiple camera studio-
based systems allowing estimation of complex human
movements.

4.3. Direct model use

The use of an explicit model of a person’s kinematics,
shape, and appearance in an analysis-by-synthesis frame-
work is the most widely investigated approach to human
pose estimation from video. In the previous survey [247]
fifty papers (40% of those surveyed) were in this category
starting with some of the earliest work in human pose esti-
mation [148]. Model-based analysis-by-synthesis has con-
tinued to be a dominant methodology for human pose
estimation.

The main novel research directions are: the introduction
of stochastic sampling techniques based on sequential
Monte Carlo; and the introduction of constraints on the
model in particular learnt models of human motion. In this
section we review key papers contributing to these advanc-
es in multiple and single view model-based pose estimation.

4.3.1. Multiple view 3D pose estimation

Up to 2000 the majority of approaches to human pose
estimation employed deterministic gradient descent tech-
niques to iteratively estimate changes in pose [86,289].
The extended Kalman filter was widely applied to human
tracking with low-order dynamics used to predict change
in pose [384]. Recent work using model-based analysis-
by-synthesis has extended deterministic gradient descent-
based approach to more complex motions. For example
Plänkers and Fua [289] demonstrated upper body tracking
of arm movements with self-occlusion using stereo and sil-
houette cues. A common limitation of gradient descent
approaches is the use of a single pose or state estimate
which is updated at each time step. In practice if there is
a rapid movement or visual ambiguities pose estimation
may fail catastrophically. To achieve more robust tracking,
techniques which employ a deterministic or stochastic
search of the pose state space have been investigated.

Stochastic tracking techniques, such as the particle filter,
were introduced for robust visual tracking of objects where
sudden changes in movement or cluttered scenes can result
in failure. The principal difficulty with their application to
human pose estimation is the dimensionality of the state
space. The number of samples or particles required increas-
es exponentially with dimensionality. Typically whole-body
human models use more than 20 degrees-of-freedom mak-
ing direct application of particle filters computationally
prohibitive. MacCormick and Isard [230] proposed parti-
tioned sampling of the state space for efficient 2D pose esti-
mation of articulated objects such as the hand. However,
this approach does not extend directly to the dimensional-
ity required for whole-body pose estimation. Deutscher
et al. [90] introduced the annealed particle filter which
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combines a deterministic annealing approach with stochas-
tic sampling to reduce the number of samples required. At
each time step the particle set is refined through a series of
annealing cycles with decreasing temperature to approxi-
mate the local maxima in the fitness function. Results
[85,90] demonstrate reconstruction of complex motion such
as a hand-stand. A hierarchal stochastic sampling scheme
to efficiently estimate the 3D pose for complex movements
or multiple people is presented in [242]. This approach ini-
tially estimates the torso pose for each person and propa-
gates samples with high fitness to estimate the pose of
adjacent body parts.

Recent work has combined deterministic or stochastic
search with gradient descent for local pose refinement to
recover complex whole-body motion. Carranza et al. [53]
demonstrate whole-body human motion estimation from
multiple views combining a deterministic grid search with
gradient descent. Pose estimation is performed hierarchi-
cally starting with the torso. For each body part a grid
search first finds the set of valid poses for which the joint
positions project inside the observed silhouettes. A fitness
function is then evaluated for all valid poses to determine
the best pose estimate. Finally gradient descent optimiza-
tion is performed to refine the estimated pose. This search
procedure is made feasible by the use of graphics hardware
to evaluate the fitness function which is based on the over-
lap between the projected model and observed silhouette
across all views. In related work Kehl et al. [191] propose
stochastic meta descent for whole-body pose estimation
with 24 degrees-of-freedom from multiple views. Stochastic
meta descent combines a stochastic sampling of the set of
model points used at each iteration of a gradient descent
algorithm. This introduces a stochastic search element to
the optimization which allows the approach to avoid con-
vergence to local minima. The use of a small number of
samples (5) per body part together with adaptive step size
allows efficient performance. Results of these approaches
demonstrate reconstruction of complex movements such
as kicking and dancing.

In summary, the introduction of stochastic sampling and
search techniques has achieved whole-body pose estimation
of complex movements from multiple views. Current
approaches are limited to gross-body pose estimation of tor-
so, arms, and legs and do not capture detailed movement
such as hand-orientation or axial arm rotation. Multiple
hypothesis sampling achieves robust tracking but does not
provide a single temporally consistent motion estimate
resulting in jitter which must be smoothed to obtain visually
acceptable results. There remains a substantial gulf between
the accuracy of commercial marker-based and markerless
video-based human motion reconstruction.

4.3.2. Monocular 3D pose estimation

Reconstruction of human pose from a single view image
sequence is considerably more difficult than either the
problem of 2D pose estimation or 3D pose estimation from
multiple views. To resolve the inherent ambiguity in

monocular human motion reconstruction additional con-
straints on kinematics and movement are typically
employed [43,384]. Wachter and Nagel [384] used the
extended Kalman filter together with kinematic joint con-
straints to estimate the 3D motion of a person walking par-
allel to the image plane. As discussed in the previous
section the use of a single hypothesis tracking scheme is
prone to failure for complex motions. Loy et al. [225]
employ a manual key-frame approach to 3D pose estima-
tion of complex motion in sports sequences.

Sminchisescu and Triggs [343] have investigated the
application of stochastic sampling to estimation of 3D pose
from monocular image sequences. They observe that alter-
native 3D poses which give good correspondence to the
observations are most likely to occur in the direction of
greatest uncertainty. This motivated the introduction of
covariance scaled sampling an extension of particle filters
which increases the covariance in the direction of maxi-
mum uncertainty by approximately an order of magnitude
to increases the probability of generating samples close to
local minima in the fitness function. Samples are then opti-
mized to find the local minima using a gradient descent
approach. Results demonstrate monocular tracking and
3D reconstruction of human movements with moderate
complexity including walking with changes in direction.
Further research [344] has explicitly enumerated the poten-
tial kinematic minima which cause visual ambiguities.
Incorporating this in the sampling process increases effi-
ciency and robustness allowing reconstruction of more
complex human motion from monocular video sequences.

Probabilistic approaches using assemblies of parts
together with higher level knowledge of human kinematics
and shape have also been investigated for single view 3D
pose estimation. Lee and Cohen [211] combine a probabilis-
tic proposal map representing the estimated likelihood of
body parts in different 3D locations with an explicit 3D
model to recover the 3D pose from single image frames.
A data driven Markov chain Monte Carlo (MCMC) is used
to search the high-dimensional pose space. The proposal
map for each body part represents the likelihood of the pro-
jected 3D pose. Proposal distributions are used to efficiently
sample the pose space during MCMC search. Results dem-
onstrate 3D pose estimation from single images of sports
players in a variety of complex poses. Moeslund and Gra-
num [246,252] apply a data driven sequential Monte Carlo
approach to pose estimation of a human arm. A part detec-
tor provides likely locations of the hand in the image and
their uncertainties. This information is applied to correct
the prediction lowering the number of particles required.

Navaratnam et al. [265] combine a hierarchical kinemat-
ic model with a bottom up part detection to recover the 3D
upper-body pose. The use of part detection allows individ-
ual body parts to be independently located at each frame.
Kinematic constraints between body parts are represented
hierarchically to recover the 3D pose from a single view.
Unlike previous model free probabilistic assembly of parts
this approach enables recovery of full 3D pose at each
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frame. Temporal information is also integrated using a
HMM framework to reconstruct temporally coherent
movement sequences.

Monocular reconstruction of complex 3D human move-
ment remains an open problem. Recent research has inves-
tigated the use of learnt motion models to provide strong
priors to constrain the search.

4.3.3. Learnt motion models

There has been increasing interest in the use of learnt
models of human pose and motion to constrain vision-
based reconstruction of human movement from single or
multiple views. The availability of marker-based human
motion capture data [1,2,4] has led to the use of learnt
models of human motion for both animation synthesis in
computer graphics and vision-based human motion
synthesis.

Learnt models have been developed in computer anima-
tion to allow synthesis of natural motions with user speci-
fied constraints from a motion capture database
[20,199,209,255]. This use of learnt models in computer
graphics is relevant to the problem of vision-based recon-
struction of human movement in developing methods to
predict and constrain human pose and motion estimation.
Inverse kinematics of human motion based on learnt mod-
els has recently been introduced in computer graphics
[128,271]. Ong et al. [271] use a learnt model of whole-body
configurations to constrain the pose given a set of end effec-
tor positions for a motion sequence. Grochow et al. [128]
use scaled Guassian process latent variable models
(SGPLVM) to model the probability distribution over all
possible whole-body poses to constrain both character pose
in animation and pose reconstruction from images.

Sidenbladh et al. [332,334,335] combine stochastic sam-
pling with a strong learned prior of walking motion for
tracking. An exemplar-based approach is used in [335] sim-
ilar to work in motion synthesis [20,199,255] where a data-
base of motion capture examples is indexed to obtain
possible movement directions. Statistical priors on human
appearance and image motion are used [333] to model
the likelihood of observing various image cues for a given
movement. These are incorporated in an analysis-by-syn-
thesis approach to human motion reconstruction. Similar-
ly, a hierarchical PCA model of human dynamics learnt
from motion capture using a Gaussian mixture and
HMM to represent dynamics is proposed for monocular
tracking in [189]. Agarwal and Triggs [7] use a learned
model of local second order dynamics for 2D tracking of
more general motions walking and running with transitions
and turns in monocular image sequences. Their work dem-
onstrates that strong priors on human dynamics allows 2D
pose estimation for fast movements in cluttered scenes.

Subsequent research has investigated the use of learnt
motion models for 3D motion reconstruction primarily
from monocular image sequences to overcome the inherent
visual ambiguity. In [154] learnt models from short motion
sequences are used to infer 3D pose from tracked image

features of simple movements. Sigal et al. [336] combine
body part detectors with a learned motion model to infer
3D human pose from monocular images of walking with
automatic initialization. Their approach uses belief propa-
gation via stochastic sampling over a loopy graph of loose-
ly attached body parts. Urtasun and Fua [373] introduce
the use of temporal motion models learnt from sequences
of motion capture data to reconstruct human motion using
a deterministic gradient descent optimization. Principal
component analysis (PCA) is performed on multiple exam-
ples of concatenated joint angle sequences for walking and
running to provide a low-dimensional parametrization.
The parametric motion model is then used to constrain
the movement of a 3D humanoid model for walking and
running movements with variable speed from stereo [373]
and golf swings from a single view [370]. Urtasun et al.
[372] advocate an alternative approach to representation
of human motion using SGPLVM to learn a low-dimen-
sional embedding of the pose state space for specific move-
ments such as golf-swings or walking from monocular
image sequences. Gaussian process models which incorpo-
rate dynamics [259,371] have been introduced to ensure
continuous embedding of motion in the latent space for
robust tracking. Further research following the methodol-
ogy of using learnt motion models has addressed the prob-
lem of viewpoint invariance in tracking human movement
[8,272].

Research introducing the use of learnt statistical models
of human motion since 2000 has demonstrated that using
strong motion priors facilitates reconstruction of 3D pose
sequences from monocular images. To date the generality
of these approaches has been limited to specific motion
models with relatively small variation in motion and fixed
transitions. A challenge for future research is to build more
general motion models or methods of transitioning
between models, to allow the reconstruction of uncon-
strained human movement.

4.4. Discussion of advances in human pose estimation

As identified in this section research in automatic esti-
mation of human pose has been an active area over the past
5 years with significant advances being made. A number of
novel methodologies have been proposed towards the
objective of human pose estimation from monocular
image sequences in natural scenes. The introduction of
methods based on 2D pose estimation as a probabilistic
assembly of parts have achieved significant advances for
cluttered natural scenes such as film footage or sports
[104,158,168,235,296,302,310,314]. These approaches are
based on detection of body parts such as the face, hands
or limbs independently for each image frame.

Similarly there have been significant advances in the use
of example-based methods to learn the mapping from 2D
image features such as silhouettes to 3D pose
[6,41,152,326,340]. These methods commonly exploit dat-
abases of human motion capture data to render images
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of a model in multiple poses providing known 2D image to
3D pose correspondence. Currently example-based meth-
ods are limited to the fixed classes of movement and range
of viewpoints used in training. A future challenge is to
extend these methods to viewpoint invariant 3D pose esti-
mation for general movement. There is also the possibility
of combining learnt 2D to 3D mappings with 2D pose
detection to achieve 3D pose detection in cluttered scenes
from monocular image sequences or single image frames.

Model-based pose estimation using an analysis-by-syn-
thesis methodology to estimate 3D pose from multiple view
images has focused on reliable recovery of complex move-
ments [53,90,191]. Significant advances in the complexity of
movement that can be reconstructed have been achieved
through the use of stochastic sampling and search tech-
niques in pose estimation from multiple views. Similarly
research in 3D pose estimation from monocular image
sequences using stochastic sampling [343] has achieved
reconstruction in cluttered scenes. Monocular reconstruc-
tion of complex 3D human movement remains an open
problem. Learnt models of human motion have been
applied extensively to constrain the monocular reconstruc-
tion problem by providing strong priors on motion
[7,334,336,372]. Currently learnt motion models are limited
to specific classes of motion. The extension of learnt mod-
els to reconstruction of general human movement remains
an open problem.

Over the past 5 years there have been significant advanc-
es in the range of human motion which can be reconstruct-
ed from either monocular or multiple view image
sequences. A limitation of existing research which should
be addressed in future is the comparison of different
approaches on common data sets and performance evalua-
tion of accuracy against ground-truth.

5. Recognition

The field of action and activity representation and rec-
ognition is relatively old, yet still immature. This area is
presently subject to intense investigation which is also
reflected by the large number of different ideas and
approaches. The approaches depend on the goal of the
researcher and applications for activity recognition are
interesting for surveillance, medical studies and rehabilita-
tion, robotics, video indexing, and animation for film and
games. For example, in scene interpretation the knowledge
is often represented statistically and is meant to distinguish
‘‘regular’’ from ‘‘irregular’’ activities.

In scene interpretation, the representations should be
independent from the objects causing the activity and thus
are usually not meant to distinguish explicitly, e.g., cars
from humans. On the other hand, some surveillance appli-
cations focus explicitly on human activities and the interac-
tions between humans. Here, one finds both, holistic
approaches, that take into account the entire human body
without considering particular body parts, and local
approaches. Most holistic approaches attempt to identify

‘‘holistic’’ information such as gender, identity, or simple
actions like walking or running. Researchers using local
approaches appear often to be interested in more subtle
actions or attempt to model actions by looking for action
primitives with which the complex actions can be modeled.

We have structured this review according to a visual
abstraction hierarchy yielding the following: scene interpre-

tation where the entire image is interpreted without identi-
fying particular objects or humans, holistic recognition

where either the entire human body or individual body
parts are applied for recognition, and action primitives

and grammers where an action hierarchy gives rise to a
semantic description of a scene. Before going into these
topics we first look closer at the definition of the action
hierarchy used in this survey since it has influence on the
remaining categories.

5.1. Action hierarchies

Terms like actions, activities, complex actions, simple

actions, and behaviors are often used interchangingly by
the different authors. However, in order to be able to
describe and compare the different publications we see
the need for a common terminology. In a pioneering work
[264], Nagel suggested to use a hierarchy of change, event,
verb, episode, and history. An alternative hierarchy (reflect-
ing the computational aspects) is proposed by Bobick [37]
who suggests to use movement, activity, and action as differ-
ent levels of abstraction (see also [12]). Others suggest to
also include situations [121] or use a hierarchy of Action
primitives and Parent Behaviors [175].

In this survey we will use the following action hierarchy:
action/motor primitives, actions, and activities. Action prim-

itives or motor primitives will be used for atomic entities out
of which actions are built. Actions are, in turn, decomposed
into activities. The granularity of the primitives often
depends on the application. For example, in robotics,
motor primitives are often understood as sets of motor con-
trol commands that are used to generate an action by the
robot (see Section 5.5).

As an example, in tennis action primitives could be, e.g.,
‘‘forehand’’, ‘‘backhand’’, ‘‘run left’’, and ‘‘run right’’. The
term action is used for a sequence of action primitives need-
ed to return a ball. The choice of a particular action depends
on whether a forehand, backhand, lob, or volley, etc., is
required in order to be able to return the ball successfully.
Most of the research discussed below falls into this category.
The activity then is in this example ‘‘playing tennis’’. Activ-

ities are larger scale events that typically depend on the con-
text of the environment, objects, or interacting humans.

A good overview of activity recognition is given by
Aggarwal and Park [12]. They aim at higher-level under-
standing of activities and interactions and discuss different
aspect such as level of detail, different human models, rec-
ognition approaches and high-level recognition schemes.
Veeraraghavan et al. [379] discuss the structure of an action
and activity space.
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5.2. Scene interpretation

Many approaches consider the camera view as a whole
and attempt to learn and recognize activities simply by
observing the motion of objects without necessarily know-
ing their identity. This is reasonable in situations where the
objects are small enough to be represented as points on a
2D plane.

Stauffer et al. [355] present a full scene interpretation
system which allows detection of unusual situations. The
system extracts features such as 2D position and speed, size
and binary silhouettes. Vector quantization is applied to
generate a codebook of K prototypes. Instead of taking
the explicit temporal relationship between the symbols into
account, Stauffer and Grimson use co-occurrence statistics.
Then, they define a binary tree structure by recursively
defining two probability mass functions across the proto-
types of the code book that best explain the co-occurrence
matrix. The leaf nodes of the binary tree are probability
distributions of co-occurrences across the prototypes and
at a higher tree depth define simple scene activities like
pedestrian and car movement. These can then be used for
scene interpretation. In Eng et al. [101] a swimming pool
surveillance system is presented. From each of the detected
and tracked objects features such as speed, posture, sub-
mersion index, an activity index, and a splash index, are
extracted. These features are fed into a multivariate poly-
nomial network in order to detect water crisis events. Boi-
man and Irani [39] approach the problem of detection
irregularities in a scene as a problem of composing newly
observed data using spatio-temporal patches extracted
from previously seen visual examples. They extract small
image and video patches which are used as local descrip-
tors. In an inference process, they search for patches with
a similar geometric configuration and appearance proper-
ties, while allowing for small local misalignments in their
relative geometric arrangement. This way, they are able
to quickly and efficiently infer subtle but important local
changes in behavior. Junejo et al. [182] describe an
approach to focusses on dynamic information for scene
interpretation. Their method can distinguish between
objects traversing spatially dissimilar paths or objects tra-
versing spatially proximal paths but with different spatio-
temporal characteristics. For this, they learn the paths in
a training phase where graph-cuts are used for clustering
the trajectories. For matching, they use spatial similarity,
velocity characteristics and curvature features.

In [64,375] activity trajectories are modeled using non-
rigid shapes and a dynamic model that characterizes the
variations in the shape structure. Vaswani et al. [375] uses
Kendall’s statistical shape theory [192]. Nonlinear dynam-
ical models are used to characterize the shape variation
over time. An activity is recognized if it agrees with the
learned parameters of the shape and associated dynamics.
Chowdhury et al. [63] use a subspace method to model
activities as a linear combination of 3D basis shapes.
The work is based on the factorization theorem [365].

Deviations from the learned normal activity shapes can
be used to identify abnormal ones.

A similar complex task is approached by Xiang and
Gong [400]. They present a unified bottom-up and top-
down approach to model complex activities of multiple
objects in cluttered scenes. Their approach is object-inde-
pendent and they use a dynamically multi-linked hidden
Markov models (HMMs) on conjunction with Schwarz’s
Bayesian information criterion [324] to interlink between
multiple temporal processes corresponding to multiple
event classes. Liu and Chua [223] present an HMM-based
approach for recognizing multi-agent activities.

5.3. Holistic recognition approaches

The recognition of the identity of a human, based on
his/her global body structure and the global body dynam-
ics is discussed in many publications. Of particular interest
for identity recognition has been the human gait. Other
approaches using global body structure and dynamics are
concerned with the recognition of simple actions such as
running and walking. Almost all methods are silhouette
or contour-based. Subsequent techniques are mostly holis-
tic, e.g., the entire silhouette or contour is being taken into
account without detecting individual body parts.

5.3.1. Human body-based recognition of identity

In Wang et al. [390] the silhouette of a human is comput-
ed and then unwrapped by evenly sampling the contour.
Next, the distance between each contour point and its cen-
ter of gravity is computed. The unwrapped contour is then
processed by PCA. To compute the spatio-temporal corre-
lation they compare trajectories in eigenspace by first
applying appropriate time warping to minimize the dis-
tance between the probe and the gallery trajectories. On
outdoor data and in spite of its simplicity, it gives good
results while being computationally efficient. BenAbdelk-
ader et al. [32] use a variation of co-occurrence techniques.
After applying a suitable time-warping and normalization
with respect to scale a self-similarity plot is computed
where silhouette images of the sequences are pairwise cor-
related. PCA is applied to reduce the dimensionality of
these plots and a k-nearest neighbor classifier is applied
in eigenspace for recognition.

Foster et al. [111] extract, embox, and normalize silhou-
ettes. Then, a set of binary masks are defined and the area
of the silhouette within the mask is computed to give a
dynamic signature of the observed person for each mask.
A frame rate of 30 fps results in a 30D vector for each sig-
nature giving a n · 30 matrix, where n denotes the number
of area masks used. To remove the information about the
static shape of the silhouette, the average value of each sig-
nature can be subtracted. Fisher analysis is applied and the
k-nearest neighbor classifier is used for classification. Kale
et al. [183,184] define a HMM to model the dynamics of
individual gait. A HMM is trained for each individual in
the database. Five representative binary silhouette are used
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as the hidden states for which transition probabilities and
observation likelihoods are trained. During the recognition
phase, the HMM with the largest probability identifies the
individual. Yam et al. [402] investigate the relationship
between walking and running. They define a gait signature
based on a frequency analysis of thigh and lower leg rota-
tions. Phase and magnitude of the Fourier descriptions are
multiplied to give the phase-weighted magnitude (PWM).
It appears that the signatures for walking and running
for an individual is related by a phase modulation. The
additional individual relationship between walking and
running is used to derive improved gait-recognition which
can recognize both, walking and running patterns.

5.3.2. Human body-based recognition

While a large number of papers recognize individuals
based on their dynamics, the dynamics can also be used
to recognize what the individual is doing. The approaches
discussed in this subsection are again based on holistic
body information where no attempt is made to identify
individual body parts.

A pioneering work in this context has been presented by
Efros et al. [94]. They attempt to recognize simple actions
of people whose images in the video are only 30 pixels tall
and where the video quality is poor. They use a set of fea-
tures that are based on blurred optic flow (blurred motion
channels). First, the person is tracked so that the image is
stabilized in the middle of a tracking window. The blurred
motion channels are computed on the residual motion that
is due to the motion of the body parts. Spatio-temporal
cross-correlation is used for matching with a database.
Roh et al. [312] base their action recognition task on curva-
ture scale space templates of a player’s silhouette.

Of further interest is the enhancement where complex
actions can be dynamically composed out of the set of sim-
ple actions. Robertson and Reid [311] attempt to under-

stand actions by building a hierarchical system that is
based on reasoning with belief networks and HMMs on
the highest level and on the lowest level with features such
as position and velocity as action descriptors. Their action
descriptor is based on the work by Efros et al. [94]. The sys-
tem is able to output qualitative information such as walk-

ing—left-to-right—on the sidewalk.
A large number of publications work with space-time

volumes. One of the main approaches is to use spatio-tem-
poral XT-slices from an image volume XYT [304,305]
where articulated motions of a human can be associated
with a typical trajectory pattern. Ricquebourg and Bouth-
emy [304] demonstrate how XT-slices can facilitate track-
ing and reconstruction of 2D motion trajectories. The
reconstructed trajectory allows a simple classification
between pedestrians and vehicles. Ritscher et al. [305] dis-
cuss the recognition in more detail by a closer investigation
of the XT-slices. Quantifying the braided pattern in the slic-
es of the spatio-temporal cube gives rise to a set of features
(one for each slice) and their distribution is used to classify
the actions.

Bobick and Davis pioneered the idea of temporal tem-
plates [37,38]. They propose a representation and recogni-
tion theory [37,38] that is based on motion energy images

(MEI) and motion history images (MHI). The MEI is a
binary cumulative motion image. The MHI is an enhance-
ment of the MEI where the pixel intensities are a function
of the motion history at that pixel. Matching temporal tem-
plates is based on Hu moments. Bradski et al. [40] pick up
the idea of MHI and develop timed MHI (tMHI) for
motion segmentation. tMHI allow determination of the
normal optical flow. Motion is segmented relative to object
boundaries and the motion orientation. Hu moments are
applied to the binary silhouette to recognize the pose. A
work conceptually related to [38] is by Masound and Papa-
nikolopoulos [231]. Here, motion information for each vid-
eo frame is represented by a feature image. However,
unlike [38], an action is represented by several feature
images. PCA is applied for dimensionality reduction and
each action is then represented by a manifold in PCA
space.

Yi et al. [409] present the idea of a pixel change ratio
map (PCRM) which is conceptually similar to the MHI.
However, further processing is based on motion histo-
grams which are computed from the PCRM. Weinberg
et al. [393] suggest replacing the motion history image by
a 4D motion history volume. For this, they first compute
the visual hull from multiple cameras. Then, they consider
the variations around the central vertical axes and use
cylindric coordinates to compute alignments and compari-
sons. Motion history images can also be used to detect and
interpret actions in compressed video data. Babu and
Ramakrishnan [23] compute a flow history (MFH) from
the motion data available in compressed video. In addition
to MFH, they also use motion history images to classify
activities.

As the search of activities in large databases gains
importance, a full, hierarchical human detection system is
presented by Ozer and Wolf [275]. They approach the
tracking, pose estimation and action recognition problem
in an integrated manner. They apply a number of well-
known techniques on (un)compressed video data.

Another approach is that of ‘‘Actions Sketches’’ or
‘‘Space-Time Shapes’’ in the 3D XYT volume. Yilmaz
and Shah [410] propose to use spatio-temporal volumes
(STV) for action recognition: the 3D contour of a person
gives rise to a 2D projection. Considering this projection
over time defines the STV. Yilmaz and Shah extract infor-
mation such as speed, direction and shape by analyzing the
differential geometric properties of the STV. They
approach action recognition as an object matching task
by interpreting the STV as rigid 3D objects. Blank et al.
[36] also analyze the STV. They generalize techniques for
the analysis of 2D shapes [123] for the use on the STV.
Blank et al. argue that the time domain introduces proper-
ties that do not exist in the xy-domain and needs thus a dif-
ferent treatment. For the analysis of the STV they utilize
properties of the solution of the Poisson equation [123].
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This gives rise to local and global descriptors that are used
for recognizing simple actions.

Instead of using spatio-temporal volumes, a large num-
ber of papers choose the more classical approach of consid-
ering sequences of silhouettes. Yu et al. [412] extract
silhouettes and their contours are unwrapped and pro-
cessed by PCA. A three-layer feed forward network is used
to distinguish ‘‘walking’’, ‘‘running’’and ‘‘other’’ based on
the trajectories in eigenspace. In another PCA-based
approach, Rahman and Robles-Kelly [295] suggest to use
a tuned eigenspace technique. Their tuned eigenspaces
allow to treat the action problem as a nearest-neighbor-
hood problem in eigenspace. Jiang et al. [179] attempt to
match a given sequence of poses to a novel video. They
treat this problem as an optimal matching problem by
changing the usually highly non-convex problem into a
convex one.

Elgammal and Lee [13] use optic flow in addition to the
shape features and a HMM is used to model the dynamics.
In [98,97], Elgammal and Lee use local linear embedding
(LLE) [317,362] in order to find a linear embedding of
human silhouettes. In conjunction with a generalized radial
basis function interpolation, they are able to separate style
and content of the performed actions [97] as well as to infer
3D body pose from 2D silhouettes [98]. Sato and Aggarwal
[321] are concerned with the detection of interaction between
two individuals. This is done by grouping foreground pixels
according to similar velocities. A subsequent tracker tracks
the velocity blobs. The distance between two people, the
slope of relative distance and the slope of each person’s posi-
tion are the features used for interaction detection and clas-
sification. In Cheng et al. [58], walking is distinguished from
running based on sport event video data. The data comes
from real-life programs. They compute a dense motion field
and foreground segmentation is performed based on color
and motion. Within the foreground region, the mean motion
magnitude between frames is computed over time followed
by an analysis in frequency space to compute a characteristic
frequency. A Gaussian classifier is used for classification.
Gao et al. [113] consider a smart room application. A dining
room activity analysis is performed by combining motion
segmentation with tracking. They use motion segmentation
based on optical flow and RANSAC. Then, they combine
the motion segmentation with a tracking approach which
is sensitive to subtle motion. In order to identify activities,
they identify predominant directions of relative movements.

In a number of publications, recognition is based on
HMMs and dynamic Bayes networks (DBNs). Elgammal
et al. [99] propose a variant of semi-continuous HMMs
for learning gesture dynamics. They represent the observa-
tion function of the HMM as non-parametric distributions
to be able to relate a large number of exemplars to a small
set of states. Luo et al. [227] present a scheme for video
analysis and interpretation where the higher-level knowl-
edge and the spatio-temporal semantics of objects are
encoded with DBNs. The DBNs are based on key-frames
and are defined for video objects. Shi et al. [330] present

an approach for semi-supervised learning of the HMM or
DBN states to incorporate prior knowledge. Leo et al.
[217] attempt to classify actions at an archaeological site.
They present a system that uses binary patches and an
unsupervised clustering algorithm to detect human body
postures. A discrete HMM is used to classify the sequences
of poses into a set of four different actions.

Smith et al. [347] suggest to use multiple levels of zoom
for activity analysis to combine both detailed and coarse
views of a scene. They find feature correspondencies across
different zoom levels using epipolar, spatial, trajectory, and
appearance constraints.

A totally different approach is presented by Wang et al.
[392] where the aim is at classifying actions in still images.
Unsupervised learning is used to generate action classes out
of a large training set. These action classes are then used to
label test images. The approach uses a technique for
deformable matching of edges of image pairs, based on lin-
ear programming relaxation techniques.

5.4. Recognition based on body parts

Many authors are concerned with the recognition of
actions based on the dynamics and settings of individual
body parts. Some approaches, e.g., [83], start out with sil-
houettes and detect the body parts using a method inspired
by the W4-system [138]. Others use 3D-model based body
tracking approaches (see Section 4) where the recognition
of (often periodic) action is used as a loop-back to support
pose estimation. Other approaches circumvent the vision
problem by using a motion capture system in order to be
able to focus on the action issues [81,277,279].

In a work related to [390], Wang et al. [389] present an
approach where contours are extracted and a mean con-
tour is computed to represent the static contour informa-
tion. Dynamic information is extracted by using a
detailed model composed of 14 rigid body parts, each
one represented by a truncated cone. Particle filtering is
used to compute the likelihood of a pose given an input
image. For classification, a nearest neighbor classifier
(NN) was used.

Davis and Taylor [83] present an approach to distinguish
walking from non-walking. A method based on the W4-sys-
tem is used to detect body parts from silhouettes. Based on
the feet locations four motion properties are extracted of
which three (cycle time, stance/swing ratio, and double sup-
port time) reflect dynamic features and one (extension angle)
reflects a structural feature. The walking category is defined
by three pairs of the dynamic features and the structural fea-
ture. In a similar approach Ren and Xu [300] use as input a
binary silhouette from which they detect the head, torso,
hands, and elbow angles. Then, a primitive-based coupled
HMM is used to recognize natural complex and predefined
actions. They extend their work in [301] by introducing
primitive-based DBNs. Parameswaran and Chellappa
[277,279] consider the problem of view-invariant action rec-
ognition based on point-light displays by investigating 2D
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and 3D invariant theory. As no general, non-trivial 3D–2D
invariants exist, Parameswaran and Chellappa employ a
convenient 2D invariant representation by decomposing
and combining the patches of a 3D scene. For example,
key poses can be identifies where joints in the different poses
are aligned. In the 3D case, six-tuples corresponding to six
joints give rise to 3D invariant values and it is suggested
to use the progression of these invariants over time for
action representation. A similar issue is discussed in the
work by Yilmaz and Shah [411] where joint trajectories from
several uncalibrated moving cameras are considered. They
propose an extension to the standard epipolar geometry-
based approach by introducing a temporal fundamental
matrix that models the effects of the camera motion. The
recognition problem is then approached in terms of the
quality of the recovered scene geometry. Gritai et al. [127]
address the invariant recognition of human actions, and
investigate the use of anthropometry to provide constraints
on matching. Gritai et al. use the constraints to measure the
similarity between poses and pose sequences. Their work is
based on a point-light display like representation where a
pose is presented through a set of points in 3D space. Sheikh
et al. [328] pick up these results of [127,411] and discuss that
the three most important sources of variability in the task of
recognizing actions come from variations in viewpoint, exe-
cution rate, and anthropometry of the actors. Then, they
argue that the variability associated with the execution of
an action can be closely approximated by a linear combina-
tion of action bases in joint spatio-temporal space. Davis’
and Gao’s [79,81] aim is to recognize properties from visual
target cues, e.g., the sex of an individual or the weight of a
carried object is estimated from how the individuals move.
Davis and Gao [81] recognize the gender of a person based
on the gait. Labeled 2D trajectories from motion capture
devices of humans are factored using three-mode PCA into
components interpreted as posture, time, and gender. An
importance weight for each of the trajectories is learned
automatically. Davis et al. [79] use the three-mode PCA
framework to recognize human action efforts. Here, the
three modes pose, time, and effort are used. In order to detect
particular body parts Fanti et al. [103] give the structure of a
human as model knowledge. To find the most likely model
alignment with input data they exploit appearance informa-
tion which remains approximately invariant within the same
setting. Expectation maximization is used for unsupervised
learning of the parameters and structure of the model for
a particular action and unlabeled input data. Action is then
recognized by maximum likelihood estimation. Ning et al.
[267] use a parabola to model the shoulders of a human.
Fisher discriminant analysis (FDA) on the parabola param-
eters are used to detect shrugs.

5.5. Action primitives and grammars

There is strong neurobiological evidence that human
actions and activities are directly connected to the motor
control of the human body [117,307,308]. When viewing

other agents performing an action, the human visual sys-
tem seems to relate the visual input to a sequence of motor
primitives. The neurobiological representation for visually
perceived, learned, and recognized actions appears to be
the same as the one used to drive the motor control of
the body. These findings have gained considerable atten-
tion from the robotics community [77,322]. In imitation

learning the goal is to develop a robot system that is able
to relate perceived actions to its own motor control in
order to learn and to later recognize and perform the dem-
onstrated actions. Consequently, it is ongoing research to
identify a set of motor primitives that allow (a) representa-
tion of the visually perceived action and (b) motor control
for imitation. In addition, this gives rise to the idea of inter-
preting and recognizing activities in a video scene through
a hierarchy of primitives, simple actions and activities.
Most of the following researchers attempt to learn the
motor or action primitives by defining a ‘‘suitable’’ repre-
sentation and then learning the primitives from demonstra-
tions. The representations used to describe the primitives
vary a lot across the literature and are subject to ongoing
research. Most of the subsequently mentioned work is
based on motion capture data.

Jenkins et al. [176,177] suggest to apply a spatio-tempo-
ral non-linear dimension reduction technique on manually
segmented human motion capture data. Similar segments
are clustered into primitive units which are generalized into
parameterized primitives by interpolating between them. In
the same manner, they define action units (‘‘behavior
units’’) which can be generalized into actions. Ijspeert
et al. [165] approach the problem of defining motor primi-
tives from the motor side. They define a set of nonlinear
differential equations that form a control policy (CP) and
quantify how well different trajectories can be fitted with
these CPs. The parameters of a CP for a primitive move-
ment are learned in a training phase. These parameters
are also used to compute similarities between movements.
Billard and Calinon [34,50,51] use an HMM-based
approach to learn characteristic features of repetitively
demonstrated movements. They suggest to use the HMM
to synthesize joint trajectories of a robot. For each joint,
one HMM is used. Calinon et al. [51] use an additional
HMM to model end-effector movement. In these approach-
es, the HMM structure is heavily constrained to assure
convergence to a model that can be used for synthesizing
joint trajectories.

A number of publications attempt to decouple actions
into action primitives and to interpret actions as a compo-
sition on the alphabet of these action primitives, however,
without the constraints of having to drive a motor control-
ler with the same representation. Vecchio and Perona [376]
employ techniques from the dynamical systems framework
to approach segmentation and classification. System identi-
fication techniques are used to derive analytical error anal-
ysis and performance estimates. Once, the primitives are
detected an iterative approach is used to find the sequence
of primitives for a novel action. Another approach in this
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context is presented by Bissacco [35]. They extract some
temporal statistics from the images and use them to build
a dynamical system that models contact forces explicitly.
Then, they explicitly factor out exogenous inputs that are
not unique to an individual.

Lu et al. [226] also approach the problem from a system
theoretic point of view. Their goal is to segment and repre-
sent repetitive movements. For this, they model the joint
data over time with a second order auto-regressive (AR)
model and the segmentation problem is approached by
detection significant changes of the dynamical parameters.
Then, for each motion segment and for each joint, they
model the motion with a damped harmonic model. In
order to compare actions, a metric based on the dynamic
model parameters is defined. A different problem is studied
by Wang et al. [387] addressing what kind of cost function
should be used to assure smooth transitions between
primitives.

While most scientists concentrate on the action repre-
sentation by circumventing the vision problem, Rao et al.
[298] take a vision-based approach. They propose a view-
invariant representation of action based on dynamic
instants and intervals. Dynamic instants are used as primi-
tives of actions which are computed from discontinuities of
2D hand trajectories. An interval represents the time period
between two dynamic instants (key poses). A similar
approach of using meaningful instants in time is proposed
by Reng et al. [303] where key poses are found based on the
curvature and covariance of the normalized trajectories.
Cuntoor et al. [72] find key poses through evaluation of
anti-eigenvalues.

Gonzàlez et al. [121] employ the point distribution mod-
el [68] to model the variability of joint angle settings of a
stick figure model. An action spaces, aSpace, is trained
by giving a set of joint angle settings coming from different
individuals but showing the same action. aSpaces are then
used for synthesis and recognition of known actions. Mod-
eling of activities on a semantic level has been attempted by
Park and Aggarwal[281]. The system they describe has 3
abstraction levels. At the first level, human body parts
are detected using a Bayesian network. At the second level,
DBNs are used to model the actions of a single person. At
the highest level, the results from the second level are used
to identify the interactions between individuals. Ivanov and
Bobick [170] suggest using stochastic parsing for a semantic
representation of an action. They discuss that for some
activities, where it comes to semantic or temporal ambigu-
ities or insufficient data, stochastic approaches may be
insufficient to model complex actions and activities. They
suggest decoupling actions into primitive components and
using a stochastic parser for recognition. In [170] they pick
up a work by Stolcke [356] on syntactic parsing in speech
recognition and enhance this work for activity recognition
in video data. Yamamoto et al. [403] present an application
where a stochastic context free grammar is used for action
recognition. A somewhat different approach is taken by Yu
and Yang [413]. They use neural networks to find primi-

tives. They apply self-organizing maps (SOMs, Kohonen’s
feature maps [197]) which cluster the training images based
on shape feature data. After training the SOMs generated a
label for each input image which converts an input image
sequence into a sequence of labels. A subsequent clustering
algorithm allows to find repeatedly appearing substruc-
tures in these label sequences. These substructures are then
interpreted as motion primitives. A very interesting
approach is presented by Lv and Nevatia in [229] where
the authors are interested in recognizing and segmenting
full-body human action. Lv and Nevatia decompose the
large joint space into a set feature spaces where each fea-
ture corresponds to a single joint or combinations of relat-
ed joints. They use then HMMs to recognize each action
class based on the features and an AdaBoost scheme to
detect and recognize the features.

5.6. Discussion of advances in human action recognition

The field of recognizing human actions has received a
considerable increase of attention in the last few years. It
is apparent from the published works, that the major inter-
est lies in the field of surveillance and the related action
understanding problems. While in some publications, the
actions are interpreted without explicitly considering
humans, others discuss the dynamics of humans, explicitly.
In the latter, a large attention is devoted to rather simple
actions such as walking, running, and sitting. Here, only
a small body of literature goes beyond these simple actions
into motion interpretation where scene context and the
interaction with other humans is considered, e.g.,
[170,281,311,400,403]. Much more work is expected to
appear in this context and the approaches will be interest-
ing as they are likely to bridge the traditional vision field
with the field of artificial intelligence.

On the other hand, a good understanding of these sim-
ple actions is necessary before they can be combined into
more complex ones. The issues lie, e.g., in the invariances
with respect to viewing angle, speed, and variations
between individuals [98,328,379].

Another significant part of the discussed articles draw
some of their motivations from neuroscientific studies
[117,307,308] and deal explicitly with action primitives,
action grammars [170,281,403], and the close relationship
between action recognition and action synthesis
[34,50,51,77,322]. As these works also build on action
primitives a better understanding of action primitives is
necessary also in this context, e.g., in order to generalize
the HMMs as proposed by Billard and Calinon [34,50,51].

6. Conclusion

Over the past 5 years vision-based human motion esti-
mation and analysis has continued to be a thriving area
of research. This survey has identified over three-hundred
related publications over the period 2000–06 in major con-
ferences and journals. Increased activity in this research
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area has been driven by both the scientific challenge of
automatic scene interpretation and the demands of poten-
tial mass-market applications in surveillance, entertain-
ment production and indexing visual media.

During this period there has been substantial progress
towards automatic human motion tracking and reconstruc-
tion. Recognition of human motion has also become a cen-
tral focus of research interest. Key advances identified in
this review include:

Initialization. Automatic initialization of model shape,
appearance and pose has been addressed in recent work
[59,238]. A major advance is the introduction of
methods for pose detection from static images
[158,302,315,326] which potentially provide automatic
initialization for human motion reconstruction.
Tracking. Surveillance applications have motivated
research advances towards reliable tracking of multiple
people in unstructured outdoor scenes. Advances in
especially the use of appearance, shape and motion for
figure-ground segmentation have increased reliability
of detecting and tracking people with partial occlusion
[155,194,244,269,280,316,404]. Probabilistic classifica-
tion methods [194,232,280,285] and stochastic sampling
[155,269,290,345,404,421] have been introduced to
improve the reliability of temporal correspondence dur-
ing occlusion. Systems for self-calibrating and tracking
across multiple cameras have been investigated
[21,187,193,369]. There remains a gap between the
state-of-the-art and robust tracking of people for sur-
veillance in outdoor scenes.
Human motion reconstruction from multiple views. Signif-
icant progress has been made towards the goal of auto-
matic reconstruction of human movement from video.
The model-based analysis-by-synthesis methodology,
pioneered in early work [148], has been extended with
the introduction of techniques to efficiently search the
space of possible pose configurations for robust recon-
struction from multiple view video acquisition
[53,90,191,238]. Current approaches capture gross body
movement but do not accurately reconstruct fine detail
such as hand movements or axial rotations.
Monocular human motion reconstruction. Progress has
also been made towards human motion capture from
single views with stochastic sampling techniques
[211,265,332,343]. An increasing trend in monocular
tracking has been the use of learnt motion models to
constrain reconstruction based on movement
[7,8,332,334,373,372]. Research has demonstrated that
the use of strong a priori models enables improved
monocular tracking of specific movements.
Pose estimation in natural scenes. A recent trend to over-
come limitations of monocular tracking in video of
unstructured scenes has been direct pose detection on
individual frames. Probabilistic assemblies of parts
based on robust body part detection has achieved 2D
pose estimation in challenging cluttered scenes such as

film footage [158,235,240,296,302,314]. Example-based
methods which learn a mapping from image to 3D pose
space have been presented for reconstruction of specific
movements [8,315,326].
Recognition. Understanding behavior and action has
recently seen an explosion of research interest. Consider-
able steps have been made to advance surveillance appli-
cations towards automatic detection of unusual
activities. Progress can also be seen for the recognition
of simple actions and the description of action gram-
mars. Relatively few papers have so far dealt with higher
abstraction levels in action grammars which touch the
border of semantics and AI. Association of actions
and activities with affordances of objects will also bring
a new perspective to object recognition.

Future research in visual analysis of human movement
must address a number of open problems to satisfy the
common requirements of potential applications for reliable
automatic tracking, reconstruction and recognition. Body
part detectors which are invariant to viewpoint, body
shape, and clothing are required to achieve reliable track-
ing and pose estimation in cluttered natural scenes. The
use of learnt models of pose and motion are currently
restricted to specific movements. More general models
are required to provide constraints for capturing a wide
range of human movement. Whilst there has been substan-
tial advances in human motion reconstruction the visual
understanding of human behavior and action remains
immature despite a surge of recent interest. Progress in this
area requires fundamental advances in behavior represen-
tation for dynamic scenes, viewpoint invariant relation-
ships for movement and higher level reasoning for
interpretation of actions [325].

Industrial applications also require specific advances:
human motion capture for entertainment production
requires accurate multiple view reconstruction; surveillance
applications require both reliable detection of people and
recognition of movement and behavior from relatively
low quality imagery; human-computer interfaces require
low-latency real-time recognition of gestures, actions, and
natural behaviors. The potential of these applications will
continue to inspire the advances required to realize reliable
visual capture and analysis of moving people.
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