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Context: Big Data and Big Models

@ We are collecting data at unprecedented rates.

e Seen across many fields of science and engineering.
o Not gigabytes, but terabytes or petabytes (and beyond).

@ Machine learning can use big data to fit richer models:
e Bioinformatics.
o Computer vision.
e Speech recognition.
e Product recommendation.
e Machine translation.
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@ The most common framework is empirical risk minimization:

N

1

sz}iRnP N Z L(x,a;,b;)) + Ar(x)
i=1

data fitting term + regularizer

o We have n observations a; (and possibly labels b;).
o We want to find optimal parameters x*.

@ Examples range from squared error with 2-norm regularization,
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but also conditional random fields and deep neural networks.
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Common Framework: Empirical Risk Minimization
@ The most common framework is empirical risk minimization:
1Y
min NI;L(X, aib) +  Ar(x)

data fitting term + regularizer

o We have n observations a; (and possibly labels b;).
o We want to find optimal parameters x*.

@ Examples range from squared error with 2-norm regularization,
1 1 A
min ~(a] x — b;)? + §||x||2,

but also conditional random fields and deep neural networks.
@ Main practical challenges:

e Designing/learning good features a;.
o Efficiently solving the problem when N or P are very large.
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Motivation: Why Learn about Convex Optimization?

@ Why learn about large-scale optimization?

e Optimization is at the core of many ML algorithms.
e Can't solve huge problems with traditional techniques.

@ Why in particular learn about convex optimization?
Among only efficiently-solvable continuous problems.
e You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)
Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)
e Tools from convex analysis are being extended to non-convex.
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min f(x).

How long to find an e-optimal minimizer of a real-valued function?
x€eRn
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o After t iterations, the error of any algorithm is Q(1/t'/").

(and grid-search is nearly optimal)
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How hard is real-valued optimization?

How long to find an e-optimal minimizer of a real-valued function?

in f(x).
i 0

@ General function: impossible!
We need to make some assumptions about the function:

@ Assume f is Lipschitz-continuous: (can not change too quickly)

[F(x) = F)I < Llix = yll-

o After t iterations, the error of any algorithm is Q(1/t'/").

(and grid-search is nearly optimal)

@ Optimization is hard, but assumptions make a big difference.

(we went from impossible to very slow)
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@ Implies that all local minima are global minima.
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f(0.5x + 0.5y)
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f(Ox + (1 —0)y) < 0f(x)+ (1 — 0)f(y), for6c]0,1].

@ Function is below linear interpolation between x and y.

@ Implies that all local minima are global minima.

Not convex
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f(0x+ (1 —0)y) <0f(x)+ (1 —0)f(y), for6e]0,1].

@ Function is below linear interpolation between x and y.

@ Implies that all local minima are global minima.

/

Non-global
local minima
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f(0x+ (1 —0)y) <0f(x)+ (1 —0)f(y), for6el0,1].

A differentiable function f is convex if for all x and y we have

fly) > f(x)+ VF(x)T(y — x),

@ The function is globally above the tangent at x.

f(x) + VE(X)T(y-x)

e If Vf(y) =0, implies y is a a global minimizer.
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@ All eigenvalues of ‘Hessian’ are non-negative.
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f(Ox+ (1 —0)y) <0f(x)+(1—0)f(y), for6e]0,1].

A differentiable function f is convex if for all x and y we have

fly) > f(x)+ VF(x)T(y — x),

A twice-differentiable function f is convex if for all x we have

V2f(x) =0

@ All eigenvalues of ‘Hessian’ are non-negative.
@ The function is flat or curved upwards in every direction.

@ This is usually the easiest way to show a function is convex.
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Examples of Convex Functions

Some simple convex functions:

f(x)=c

f(x)=a'x

f(x) = ax® + b (for a > 0)
f(x) = exp(ax)

f(x) = xlog x (for x > 0)
F(x) = IxI1?

F(x) = Ixl,

f(x) = max;{x;}

Non-Smooth Objectives
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Examples of Convex Functions

Some simple convex functions:

e f(x)=c
o f(x)=a'x

o f(x)=ax®+ b (for a>0)

o f(x) = exp(ax)

o f(x) = xlogx (for x > 0)
o f(x) = |lx]?

o f(x) = lixll»

o f(x) = max;{x;}
Some other notable examples:
e f(x,y) =log(e* + &)
e f(X) = logdet X (for X positive-definite).
o f(x,Y)=xTY"1x (for Y positive-definite)
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Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:

f(x) = mlgax{f,-(x)}.
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Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = max{f(x)}.
Show that least-residual problems are convex for any ¢,-norm:
F(x) = [|Ax = bl|,

We know that || - ||, is a norm, so it follows from (2).
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Operations that Preserve Convexity

© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = miax{f,-(x)}.

Show that SVMs are convex:

1 n
f(x) = §||XH2 + CZ max{0,1 — b;a/ x}.
i=1



Motivation
Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = miax{f,-(x)}.
Show that SVMs are convex:
f(x) = %||XH2 + Czn; max{0,1 — b;a] x}.

The first term has Hessian / > 0, for the second term use (3) on
the two (convex) arguments, then use (1) to put it all together.
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Motivation for Gradient Methods

@ We can solve convex optimization problems in
polynomial-time by interior-point methods

@ But these solvers require O(P?) or worse cost per iteration.
e Infeasible for applications where P may be in the billions.

@ Large-scale problems have renewed interest gradient methods:

X = xt — o, VF(xH).

o Only have O(P) iteration cost!
e But how many iterations are needed?
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o Let's consider logistic regression with 2-norm regularization:
. A
f(x) = z; log(1 + exp(—bi(x" a;))) + §HXH2.
1=

@ Objective f is convex.

@ First term is Lipschitz continuous, second term is not.
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o Let's consider logistic regression with 2-norm regularization:
. A
f(x) = z; log(1 + exp(—bi(x" a;))) + EHXH2.
1=
@ Objective f is convex.

@ First term is Lipschitz continuous, second term is not.

@ But we have

pul =< V2F(x) =< LI, J

for some L and p.
(L<ZIAB+A 1> 2)
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Logistic Regression with 2-Norm Regularization

o Let's consider logistic regression with 2-norm regularization:

f(x) = _log(1+ exp(—bi(xa;))) + %HXH?
i=1

Objective f is convex.

First term is Lipschitz continuous, second term is not.

But we have

pul =< V2F(x) =< LI, J

for some L and p.
(L<FIAIB+ A =)

We say that the gradient is Lipschitz-continuous.

We say that the function is strongly-convex.
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Properties of Lipschitz-Continuous Gradient

@ From Taylor's theorem, for some z we have:

Fy) = F(x) + VA T(y — %)+ =(v — ) T2 (2)(y — x)

5
e Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — X2

@ Global quadratic upper bound on function value.
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Properties of Lipschitz-Continuous Gradient

From Taylor's theorem, for some z we have:

Fy) = F(x) + VF()T(y — %) + =

Sy =) VA (2)(y = x)

Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — X2

Global quadratic upper bound on function value.
Variant of gradient method if we set xt*1 to minimum y
value:

X = xt %Vf(xt).

Plugging this value in:

A < F(x) — o 9762

Guaranteed decrease of objective.
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Properties of Lipschitz-Continuous Gradient
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:
1
fy) = f(x) + V()T (y —x) + S = x)TV2E(2)(y — x)
o Use that V2f(z) < LI.
L
Fy) < F(x) + V)T (y —x) + Slly = x||?

@ Global quadratic upper bound on function value.

f(x) | =

1) + VIOT(y )]
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:
1
fy) = f(x) + V()T (y —x) + S = x)TV2E(2)(y — x)
o Use that V2f(z) < LI.
L
Fy) < F(x) + V)T (y —x) + Slly = x||?

@ Global quadratic upper bound on function value.

S\, 100 + ¥i00Tlyx) + (L2)llyxi] [
A I

‘\\\ !

\ /

f(x) /

1) + V)T
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TF)T(y = x) + 50y =0T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — X2

@ Global quadratic upper bound on function value.

S\, 100 + ¥i00Tlyx) + (L2)llyxi] [
A I

‘\\\ !

\ /

f(x) /

1) + V)T




Gradient Method

Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

Fy) = F60 + V()T (y = x) + 5y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — X2

@ Global quadratic upper bound on function value.
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

Fy) = F60 + V()T (y = x) + 5y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TF)T(y = x) + 50y =0T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.

=
=




Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TF)T(y = x) + 50y =0T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.

f(x)| e

f(x) + VF)T(y-x)

I
v
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TF)T(y = x) + 50y =0T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.

f(x)

f(x) + VI T(y-x)}

f(x) + VE(X)T(y-X) + (W2)y-xI2[* < -
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Properties of Strong-Convexity

From Taylor's theorem, for some z we have:
fly)=f VE(x) T (y - Ly =TV -
() =f0) + V) (y =x) + 50y = x) (2)(y —x)
o Use that V2f(z) = ul.

F(y) 2 F(x) + V)T (y = x) + Elly = xIP

Global quadratic lower bound on function value.

Minimize both sides in terms of y:

Fx*) > F(x) - ;Mw(x)\%

Upper bound on how far we are from the solution.
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Linear Convergence of Gradient Descent

@ We have bounds on xtt! and x*:

) < F) = S IVAOIE, () > () = 5[V
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@ We have bounds on xtt! and x*:
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Linear Convergence of Gradient Descent

@ We have bounds on xtt1 and x*:

A < F() = o[V () 2 F(x) 21M||Vf(xt)||2.
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Linear Convergence of Gradient Descent

@ We have bounds on xtt! and x*:

1 1

F(x) < F(x) = VAP, F(xT) > F(xF) = VA
2L 2u

combine them to get

FO) = F(x) < (1= T) 1F(x) = ()]
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Linear Convergence of Gradient Descent

@ We have bounds on xtt! and x*:

1 1
F(x) < F(x) = VAP, F(xT) > F(xF) = VA
2L 2u
combine them to get
F) = F(x) < (1= 0) [F(xF) = F(x)
L
@ This gives a linear convergence rate:

Fxt) = ) < (1= 1) 1F00) = )

@ Each iteration multiplies the error by a fixed amount.

(very fast if u/L is not too close to one)
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Maximum Likelihood Logistic Regression

@ What about maximum-likelihood logistic regression?

f(x) = log(1 + exp(—bi(x"a;))).

i=1
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Maximum Likelihood Logistic Regression

@ What about maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;))).

i=1

@ We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)
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Maximum Likelihood Logistic Regression

e What about maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;))).

i=1

@ We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)

/
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Maximum Likelihood Logistic Regression

e What about maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;))).

i=1

@ We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)

1
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Maximum Likelihood Logistic Regression

e What about maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;))).

i=1

@ We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)
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Maximum Likelihood Logistic Regression

@ Consider maximum-likelihood logistic regression:

n

F(x) =) log(1+ exp(—bi(x" a))).

i=1

o We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x) + VFx)T(x* = x)

@ If some x* exists, we have the sublinear convergence rate:

F(x") — F(x*) = O(1/1)

(compare to slower Q(1/t~1/N) for general Lipschitz functions)
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Maximum Likelihood Logistic Regression
@ Consider maximum-likelihood logistic regression:
F(x) =) log(1+ exp(—bi(x" a))).
i=1
o We now only have

0 < V2f(x) < LI.

Convexity only gives a linear upper bound on f(x*):

f(x*) < f(x)+ Vf(X)T(X* - X)

If some x* exists, we have the sublinear convergence rate:

F(x") — F(x*) = O(1/1)
(compare to slower Q(1/t~1/N) for general Lipschitz functions)

o If f is convex, then f + \||x||? is strongly-convex.
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Gradient Method: Practical Issues

@ In practice, searching for step size (line-search) is usually
much faster than o = 1/L.

(and doesn't require knowledge of L)
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Gradient Method: Practical Issues

@ In practice, searching for step size (line-search) is usually
much faster than o = 1/L.
(and doesn't require knowledge of L)
@ Basic Armijo backtracking line-search:
@ Start with a large value of a.
@ Divide « in half until we satisfy (typically value is v = .0001)

F(x"1) < F(x) = yal VA
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Gradient Method: Practical Issues

@ In practice, searching for step size (line-search) is usually
much faster than o = 1/L.
(and doesn't require knowledge of L)
@ Basic Armijo backtracking line-search:
@ Start with a large value of a.
@ Divide « in half until we satisfy (typically value is v = .0001)

F(x) < £(x*) = yal [ VF(x)| 2.
@ Practical methods may use Wolfe conditions (so « isn't too

small), and/or use interpolation to propose trial step sizes.

(with good interpolation, & 1 evaluation of f per iteration)



Gradient Method

Gradient Method: Practical Issues

In practice, searching for step size (line-search) is usually
much faster than o = 1/L.
(and doesn't require knowledge of L)
Basic Armijo backtracking line-search:
@ Start with a large value of «.
@ Divide « in half until we satisfy (typically value is v = .0001)

F(x1) < F(x*) =yl [ V(x|
Practical methods may use Wolfe conditions (so « isn't too
small), and/or use interpolation to propose trial step sizes.

(with good interpolation, & 1 evaluation of f per iteration)

Also, check your derivative code!
f(x + dej) — f(x)
4]
For large-scale problems you can check a random direction d:
f(x+dd) — f(x)
0

Vif(x) =~

Vi(x)Td ~
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Accelerated Gradient Method

@ Is this the best algorithm under these assumptions?

Algorithm ‘ Assumptions ‘ Rate
Gradient Convex O(1/t)
Nesterov Convex 0(1/t?)

Gradient | Strongly-Convex | O((1 — u/L)")
Nesterov | Strongly-Convex | O((1 — +/u/L)")
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Accelerated Gradient Method

@ Is this the best algorithm under these assumptions?

Algorithm ‘ Assumptions ‘ Rate
Gradient Convex O(1/t)
Nesterov Convex 0(1/t?)

Gradient | Strongly-Convex | O((1 — u/L)")
O(

Nesterov | Strongly-Convex (1—+/u/L)")
@ Nesterov's accelerated gradient method:

Xt+1 = Yt — OétVf(}/t)>
Yer1 = Xe + Be(xer1 — X)),
for appropriate a;, 5.

@ Rate is nearly-optimal for dimension-independent algorithm.
@ Similar to heavy-ball/momentum and conjugate gradient.
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Gradient Method

Accelerated Gradient Method

Is this the best algorithm under these assumptions?
Algorithm ‘ Assumptions ‘ Rate
Gradient Convex O(1/t)
Nesterov Convex 0(1/t?)

Gradient | Strongly-Convex | O((1 — u/L)")
O(

Nesterov | Strongly-Convex (1—+/p/L)Y)
Nesterov’'s accelerated gradient method:

Xt+1 = Yt — OétVf(}/t)>
Ver1 = Xt + Be(Xe41 — Xt),

for appropriate a;, 5.
Rate is nearly-optimal for dimension-independent algorithm.
Similar to heavy-ball/momentum and conjugate gradient.

For logistic regression and many other losses, we can get
linear convergence without strong-convexity [Luo & Tseng, 1993].
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Newton's Method

@ The oldest differentiable optimization method is Newton's.
(also called IRLS for functions of the form f(Ax))
@ Modern form uses the update

1l — xt _ ad,

X
where d is a solution to the system

2 _
\V4 f(X)d — Vf(X) (Assumes V2f(X) = 0)
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Newton's Method

@ The oldest differentiable optimization method is Newton's.
(also called IRLS for functions of the form f(Ax))
@ Modern form uses the update

t+1

xT =x" —ad,

where d is a solution to the system

2 —
VI (x)d = VE(X):  (assumes v27() = 0)

@ Equivalent to minimizing the quadratic approximation:

1
F(y) = £+ VAT (=) + 5y = Xl

recall that ||x =X Hx
Il th 2 =xTH



Gradient Method

Newton's Method

The oldest differentiable optimization method is Newton's.
(also called IRLS for functions of the form f(Ax))
Modern form uses the update

t+1

xT =x" —ad,

where d is a solution to the system
2 _
V7t (x)d = VF(x). (Assumes V2f(x) = 0)
Equivalent to minimizing the quadratic approximation:
1
F(y) = f(x) + V() (y —x) + 2ol — X[ S2¢(x)-

recall that ||x =X Hx
Il th 2 =xTH

We can generalize the Armijo condition to
F(xh) < F(x') + yaVF(x)Td.

Has a natural step length of o = 1.

(always accepted when close to a minimizer)
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Newton's Method
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Convergence Rate of Newton's Method

o If V2f(x) is Lipschitz-continuous and V2f(x) = u, then close
to x* Newton's method has local superlinear convergence:

F(x*) = F(x*) < pelF(xF) = F(x)],

o Converges very fast, use it if you can!
@ But requires solving V2f(x)d = Vf(x).
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Convergence Rate of Newton's Method

o If V2f(x) is Lipschitz-continuous and V2f(x) = u, then close
to x* Newton's method has local superlinear convergence:

F(x*) = F(x*) < pelF(xF) = F(x)],

with lim:_o0 pr = 0.

o Converges very fast, use it if you can!

@ But requires solving V2f(x)d = Vf(x).

@ Get global rates under various assumptions
(cubic-regularization /accelerated /self-concordant).
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Newton's Method: Practical Issues
There are many practical variants of Newton's method:
@ Modify the Hessian to be positive-definite.
@ Only compute the Hessian every m iterations.
@ Only use the diagonals of the Hessian.
o

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (BFGS, L-BFGS).



Gradient Method

Newton's Method: Practical Issues

There are many practical variants of Newton's method:

Modify the Hessian to be positive-definite.
Only compute the Hessian every m iterations.
Only use the diagonals of the Hessian.

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (BFGS, L-BFGS).

Hessian-free: Compute d inexactly using Hessian-vector

products:
V2f(x)d _im Vi(x+dd) — Vf(x)
0—0 1)

Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:
(X T (VA — V()
[VE(xtH) — f(xH)]2

Another related method is nonlinear conjugate gradient.
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Outline

Stochastic Subgradient
() g
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

min —ZLX ai, bj)) + Ar(x)

xcRP N

data ﬁtting term + regularizer
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

min —ZL x,ai, bi)  +  Ar(x)

xcRP N

data ﬁtting term + regularizer

@ What if number of training examples N is very large?
e E.g., ImageNet has more than 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods
e We consider minimizing f(x) = % Z,N:l fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

Xt4+1 = X¢ — OétVf(Xt = Xt — Z Vf Xt

e lIteration cost is linear in .
e Convergence with constant a; or line-search.
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Stochastic vs. Deterministic Gradient Methods

e We consider minimizing f(x) = % Z,N:l fi(x).
@ Deterministic gradient method [Cauchy, 1847]:

Xt4+1 = X¢ — OétVf(Xt = Xt — Z Vf Xt

e lIteration cost is linear in .
e Convergence with constant a; or line-search.
@ Stochastic gradient method [Robbins & Monro, 1951]:

e Random selection of i from {1,2,..., N}.

Xt+1 = Xt — Oztf;-/(Xt).
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Stochastic vs. Deterministic Gradient Methods

e We consider minimizing f(x) = % Z,N:l fi(x).
@ Deterministic gradient method [Cauchy, 1847]:

Xt4+1 = X¢ — OétVf(Xt = Xt — Z Vf Xt

e lIteration cost is linear in .
e Convergence with constant a; or line-search.
@ Stochastic gradient method [Robbins & Monro, 1951]:

e Random selection of i from {1,2,..., N}.
Xt41 = Xt — Qtf;'/(xt).

o Gives unbiased estimate of true gradient,

E[fy( = Zw (x).

e lIteration cost is independent of N.
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Stochastic vs. Deterministic Gradient Methods

e We consider minimizing f(x) = % Z,N:l fi(x).
@ Deterministic gradient method [Cauchy, 1847]:

Xt4+1 = X¢ — OétVf(Xt = Xt — Z Vf Xt

e lIteration cost is linear in .
e Convergence with constant a; or line-search.
@ Stochastic gradient method [Robbins & Monro, 1951]:

e Random selection of i from {1,2,..., N}.
Xt41 = Xt — Oztf;-/(Xt).

o Gives unbiased estimate of true gradient,

E[fy( = Zw (x).

e lIteration cost is independent of N.
e Convergence requires a; — 0.
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Stochastic vs. Deterministic Gradient Methods

o We consider minimizing g(x) = % >.7_; fi(x).
@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are N times faster, but how many iterations?
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are N times faster, but how many iterations?

Assumption ‘ Deterministic ‘ Stochastic
Convex 0(1/t?) O(1/V/'t)
Strongly | O((1 — /u/L)Y) | O(1/t)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable if only unbiased gradient available.
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Stochastic vs. Deterministic Convergence Rates
Plot of convergence rates in strongly-convex case:

)

R

stochastic

deterministic

log(excess cost)

Y

time

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

@ Consider the binary support vector machine objective:

n
f(x) = Zl max{0,1 — b,-(xTa,-)} + %“XH2
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Stochastic vs. Deterministic for Non-Smooth

@ Consider the binary support vector machine objective:
. A
f(x) = Z; max{0,1 — bi(x"a;)} + EHXH2
i

@ Rates for subgradient methods for non-smooth objectives:
Assumption ‘ Deterministic ‘ Stochastic

Convex O(1/V/'t) O(1/V't)
Strongly O(1/t) O(1/t)

@ Other black-box methods (cutting plane) are not faster.
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Stochastic vs. Deterministic for Non-Smooth
@ Consider the binary support vector machine objective:
f(x) = Zn: max{0,1 — bi(x"a;)} + éHXH2
i=1 7 2

@ Rates for subgradient methods for non-smooth objectives:
Assumption ‘ Deterministic ‘ Stochastic

Convex O(1/V/'t) O(1/V't)

Strongly O(1/t) O(1/t)
@ Other black-box methods (cutting plane) are not faster.
@ For non-smooth problems:

e Stochastic methods have same rate as smooth case.
o Deterministic methods are not faster than stochastic method.
e So use stochastic subgradient (iterations are n times faster).
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > F(x) + VF(x)T(y — x),¥x, y.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > F(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x) +d" (y — x),Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > F(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

Fly) > f(x)+d"(y —x),Vy.

o At differentiable x:
o Only subgradient is Vf(x).
@ At non-differentiable x:
o We have a set of subgradients.
o Called the sub-differential, Of (x).

e Note that 0 € Of(x) iff x is a global minimum.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.

f(x)
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

F(y) > F(x) + VF(x)T(y = x), ¥x,y.

A vector d is a subgradient of a convex function f at x if

fFly) > f(x)+d7 (y — x),Vy.
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
Jdlx] =< -1 x<0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
x| = ¢ -1 x <0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)

@ Sub-differential of max function:

Omax{fi(x), h(x)} =
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
x| = ¢ -1 x <0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)
@ Sub-differential of max function:
VA() A(x) > ()
dmax{fi(x), L(x)} = < Vh(x) f2(x) > fi(x)
OVH(x)+ (1 —0)Vh(x) f(x) = f(x)

(any convex combination of the gradients of the argmax)
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@ The basic subgradient method:

t+1

x = x' — ad,

for some d € 9f (x*").
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(often hard to compute, but easy for ¢1-regularization)
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@ The basic subgradient method:

t+1

xt =x' — ad,

for some d € Of (x*).

© The steepest descent choice is given by argmingcor(x){lld|l}-
(often hard to compute, but easy for ¢1-regularization)

@ Otherwise, may increase the objective even for small «.

o But |[xt! — x*|| < ||xt — x*|| for small enough a.

@ For convergence, we require o — 0.
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Subgradient and Stochastic Subgradient methods

@ The basic subgradient method:

t+1

xt =x' — ad,

for some d € Of (x*).

© The steepest descent choice is given by argmingcor(x){lld|l}-
(often hard to compute, but easy for ¢1-regularization)
@ Otherwise, may increase the objective even for small «.
o But |[xt! — x*|| < ||xt — x*|| for small enough a.
@ For convergence, we require o — 0.
@ The basic stochastic subgradient method:
Xt = xt _ ad,

for some d € Of;(x") for some random i € {1,2,...,N}.
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Stochastic Subgradient Methods in Practice

@ The theory says to use decreasing sequence oy = 1/ut:

1
ir =rand(1,2,...,N), ar=—
nt
Xt = xt — afi (x5).
(1/t) for smooth objectives.

o O
o O(log(t)/t) for non-smooth objectives.
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Stochastic Subgradient Methods in Practice

@ The theory says to use decreasing sequence oy = 1/ut:
1
ir =rand(1,2,...,N), a;= pr:
Xt = xt — afi (x5).

e O(1/t) for smooth objectives.

e O(log(t)/t) for non-smooth objectives.

@ Except for some special cases, you should not do this.

o Initial steps are huge: usually = O(1/N) or O(1/V/N).
Later steps are tiny: 1/t gets small very quickly.
Convergence rate is not robust to mis-specification of .
No adaptation to ‘easier’ problems than worst case.
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Stochastic Subgradient Methods in Practice

@ The theory says to use decreasing sequence oy = 1/ut:
1
ir =rand(1,2,...,N), ar=—
nt

Xt = xt — afi (x5).

e O(1/t) for smooth objectives.
e O(log(t)/t) for non-smooth objectives.
@ Except for some special cases, you should not do this.
o Initial steps are huge: usually = O(1/N) or O(1/V/N).
o Later steps are tiny: 1/t gets small very quickly.
e Convergence rate is not robust to mis-specification of .
e No adaptation to ‘easier’ problems than worst case.
@ Tricks that can improve theoretical and practical properties:
@ Use smaller initial step-sizes, that go to zero more slowly.
@ Take a (weighted) average of the iterations or gradients:

Zwtxn dt Zdtdt
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Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:
o Rakhlin et at. [2011]:
o Averaging later iterations achieves O(1/t) in non-smooth case.
o Nesterov [2007], Xiao [2010]:

o Gradient averaging improves constants (‘dual averaging').
e Finds non-zero variables with sparse regularizers.

e Bach & Moulines [2011]:
o a, = O(1/t?) for B € (0.5,1) more robust than a; = O(1/t).
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Works that support using large steps and averaging:
o Rakhlin et at. [2011]:
o Averaging later iterations achieves O(1/t) in non-smooth case.
o Nesterov [2007], Xiao [2010]:

o Gradient averaging improves constants (‘dual averaging').
e Finds non-zero variables with sparse regularizers.

e Bach & Moulines [2011]:

o a, = O(1/t?) for B € (0.5,1) more robust than a; = O(1/t).
o Nedic & Bertsekas [2000]:

o Constant step size (a; = «) achieves rate of

E[f(x)] = f(x") < (1 = 2p0) (F(x°) = £(x*)) + O(av).
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Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:

o Rakhlin et at. [2011]:

o Averaging later iterations achieves O(1/t) in non-smooth case.
Nesterov [2007], Xiao [2010]:

o Gradient averaging improves constants (‘dual averaging').
e Finds non-zero variables with sparse regularizers.

Bach & Moulines [2011]:

o a, = O(1/t?) for B € (0.5,1) more robust than a; = O(1/t).
Nedic & Bertsekas [2000]:

o Constant step size (a; = «) achieves rate of

E[f(x)] = f(x") < (1 = 2p0) (F(x°) = £(x*)) + O(av).

Polyak & Juditsky [1992]:

e In smooth case, iterate averaging is asymptotically optimal.
@ Achieves same rate as optimal stochastic Newton method.
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Stochastic Newton Methods?

@ Should we use accelerated/Newton-like stochastic methods?
e These do not improve the convergence rate.
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Stochastic Newton Methods?

@ Should we use accelerated/Newton-like stochastic methods?
e These do not improve the convergence rate.

@ But some positive results exist.
o Ghadimi & Lan [2010]:

@ Acceleration can improve dependence on L and pu.
@ Improves performance at start or if noise is small.
e Duchi et al. [2010]:
@ Newton-like methods can improve regret bounds.
e Bach & Moulines [2013]:
o Newton-like method achieves O(1/t) without
strong-convexity.
(under extra self-concordance assumption)
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Outline

@ Finite-Sum Methods
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@ Recall the regularized empirical risk minimization problem:

N
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XrEIiRnPNZL(x,a;,b;) + Ar(x)
i=1

data fitting term + regularizer
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

N

1

XrEIiRnPNZL(x,a;,b;) + Ar(x)
i=1

data fitting term + regularizer

@ Stochastic methods:

e O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

N

1

Xrg}iRnPNZL(x,a,-,b,-) + Ar(x)
i=1

data fitting term + regularizer

@ Stochastic methods:

e O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.

@ Deterministic methods:

o O(p") convergence but requires N gradients per iteration.
e The faster rate is possible because N is finite.
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

N

1

sz]iRnPNZL(x,a;,b;) + Ar(x)
i=1

data fitting term + regularizer

@ Stochastic methods:

e O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.

Deterministic methods:

o O(p") convergence but requires N gradients per iteration.
e The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?
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Motivation for Hybrid Methods

L
-

stochastic

deterministic

log(excess cost)

Y

time



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Motivation for Hybrid Methods

stochastic

deterministic

log(excess cost)

hybrid
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@ Approach 1: control the sample size.
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Motivation

Gradient Method Stochastic Subgradient Finite-Sum Methods

Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
@ The FG method uses all N gradients,

R

@ The SG method approximates it with 1 sample,

== \

=~
L=
h
x

@ A common variant is to use larger sample B¢,

1 N
|Bf| 2 i N; i)

ieBt

Non-Smooth Objectives
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Approach 1: Batching

@ The SG method with a sample Bt uses iterations

t+1 _
X =x' |Bt| Z

ieBt

e For a fixed sample size |B!|, the rate is sublinear.

Non-Smooth Objectives
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Approach 1: Batching

@ The SG method with a sample Bt uses iterations
t+1 _ Z
X = X
IBtI
ieBt

e For a fixed sample size |B!|, the rate is sublinear.

o Gradient error decreases as sample size |3!| increases.
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Approach 1: Batching

The SG method with a sample B! uses iterations

t+1 _
X =x' |Bt| Z

ieBt

For a fixed sample size |B*|, the rate is sublinear.

Gradient error decreases as sample size |3!| increases.

Common to gradually increase the sample size |Bf|.
[Bertsekas & Tsitsiklis, 1996]
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Approach 1: Batching

The SG method with a sample B! uses iterations

t+1 _
X =x' |Bt| Z

ieBt

For a fixed sample size |B*|, the rate is sublinear.

Gradient error decreases as sample size |B!| increases.

Common to gradually increase the sample size |Bf|.
[Bertsekas & Tsitsiklis, 1996]

We can choose |B| to achieve a linear convergence rate:

o Early iterations are cheap like SG iterations.
o Later iterations can use a Newton-like method.
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Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:

1 1 1 1

Stochastic1(1e-01)|
Stochastic1(1e-02)
Stochastic1(1e-03)

10" g Hybricl r
==Q== Deterministic

Objective minus Optimal

T T T il
0 20 40 60 80 100
Passes through data
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
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evaluation per iteration?
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e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

e Memory: y{ = Vf(x") from the last t where i was selected.
[Le Roux et al., 2012]
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e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

e Memory: y{ = Vf(x") from the last t where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

t N
t+41 _ ot & t
X=X Dy
i=1

e Memory: y{ = Vf(x") from the last t where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]
e Assumes gradients of non-selected examples don’t change.
o Assumption becomes accurate as ||x**! — xt|| — 0.
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Convergence Rate of SAG

o If each f/ is L—continuous and f is strongly-convex,
with a; = 1/16L SAG has

E[f(x') — F(x")] < <1 ~ min {l’gL 81/\/})t C,

where

4l
X — x|+ =

C = [F(x°) = F(x)] + m oL
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Convergence Rate of SAG

o If each f/ is L—continuous and f is strongly-convex,
with a; = 1/16L SAG has

E[f(x') — F(x")] < <1 ~ min {1’6‘L 81N}>t C,
where

4l
X — x|+ =

C = [F(x°) = F(x)] + m oL

@ Linear convergence rate but only 1 gradient per iteration.
e For well-conditioned problems, constant reduction per pass:

1 1 N<e 1Y) _ 0.8825
- — xp | —= ) =0. .
sn) =P 738

e For ill-conditioned problems, almost same as deterministic
method (but N times faster).
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Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u =1/N:
2
. L—
o Gradient method has rate (§5)" = 0.99998.
o Accelerated gradient method has rate (1 — /%) = 0.99761.
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Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u =1/N:

2
o Gradient method has rate (§5)" = 0.99998.

o Accelerated gradient method has rate (1 — /%) = 0.99761.
o SAG (N iterations) has rate (1 — min {4, - })" = 0.88250.
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.

VE) = 0.99761.

WY = 0.88250.
2
= 0.99048.

o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi

‘ L

(-

n {1735
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Vit /i

vz

e Fastest possible first-order method:
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2
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o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi
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(1-

n {1735
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e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).
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o Deterministic gradient bound (for typical L, u, and N).

@ Number of f,-’ evaluations to reach e:
o Stochastic: O((1/e)).
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o Gradient method has rate (g“) = 0.99998.
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o Accelerated gradient method has rate
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e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f,-’ evaluations to reach e:
o Stochastic: O((1/e)).
o Gradient: O(Nﬁ log(1/€)).
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.

VE) = 0.99761.

WY = 0.88250.
2
= 0.99048.

o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi

‘ L

(1-

n {1735
(s
Vit /i

vz

e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f,-’ evaluations to reach e:
o Stochastic: O((1/e)).
o Gradient: O(Nﬁ log(1/€)).

o Accelerated: O(N\/Elog(l/e)).
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.

VE) = 0.99761.

WY = 0.88250.
2
= 0.99048.

o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi

‘ L

(1-

n {1735
(s
Vit /i

vz

e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f/ evaluations to reach e:
o Stochastic: O((1/e)).
o Gradient: O(Nﬁ log(1/€)).
o Accelerated: O(N\/Elog(l/e)).
e SAG: O(max{N, ;%} log(1/¢€)).
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Objective minus Optimum

Comparing Deterministic and Stochatic Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641,
p = 47236)

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
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SAG Compared to FG and SG Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641,
p = 47236)

RT

Objective minus Optimum
S
1

Objective minus Optimum

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
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Other Linearly-Convergent Stochastic Methods

@ Newer stochastic algorithms are now available with linear
rates:
e Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
e Incremental surrogate optimization [Mairal, 2013].
e Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,
2013, Zhang et al., 2013]
SAGA [Defazio et al., 2014]
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Other Linearly-Convergent Stochastic Methods

@ Newer stochastic algorithms are now available with linear
rates:

e Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]

e Incremental surrogate optimization [Mairal, 2013].

e Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,
2013, Zhang et al., 2013]

o SAGA [Defazio et al., 2014]

@ SVRG has a much lower memory requirement (later in talk).

@ There are also non-smooth extensions (last part of talk).
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SAG Implementation Issues

@ Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.
Compute f/(x).
d=d—y+f/(x).

yi = £(x)-

— x — &
X=X N-



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

SAG Implementation Issues

@ Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.

Compute f/(x).

d=d—y+f/(x).

yi = £(x)-

X=X= 7

@ Practical variants of the basic algorithm allow:

e Regularization.

Sparse gradients.

Automatic step-size selection.
Termination criterion.
Acceleration [Lin et al., 2015].
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SAG Implementation Issues

@ Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.

Compute f/(x).

d=d—y+f/(x).

yi = £(x)-

X=X= 7

@ Practical variants of the basic algorithm allow:

e Regularization.

Sparse gradients.

Automatic step-size selection.

Termination criterion.

Acceleration [Lin et al., 2015].

Adaptive non-uniform sampling [Schmidt et al., 2013]:
e Sample gradients that change quickly more often.
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Objective minus Optimum

SAG with Adaptive Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

1
Objective minus Optimum

T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Datasets where SAG had the worst relative performance.
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Objective minus Optimum

SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

10 F §
£
O
]
107 -E
€
2
°
2
107 -8
/-_ .
07 ‘ T T T 0" ‘ T T T
0 10 2 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Lipschitz sampling helps a lot.
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o Use mini-batches (only store gradient of the mini-batch).
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Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:

o Use mini-batches (only store gradient of the mini-batch).
e Use structure in the objective:

o For fi(x) = L(a] x), only need to store N values of a x.



Motivation

Gradient Method

Stochastic Subgradient

Finite-Sum Methods

Non-Smooth Objectives

Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:

o Use mini-batches (only store gradient of the mini-batch).
e Use structure in the objective:

o For fi(x) = L(a] x), only need to store N values of a x.

e For CRFs, only need to store marginals of parts.

Objective minus Optimal
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(optical character and named-entity recognition tasks)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:
o Use mini-batches (only store gradient of the mini-batch).
e Use structure in the objective:

o For fi(x) = L(a] x), only need to store N values of a x.
e For CRFs, only need to store marginals of parts.

|
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(optical character and named-entity recognition tasks)

@ If the above don't work, use SVRG...
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Stochastic Variance-Reduced Gradient

SVRG algorithm:

o Start with xg
e fors=0,1,2.

°d—NZ,1,()

o XV =x,
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Stochastic Variance-Reduced Gradient

SVRG algorithm:
e Start with xp
o fors=0,1,2...

o do =31 (%)
o xU = xs
o fort=1,2,...m
e Randomly pick ir € {1,2,..., N}
o xt=xt"1— at(f,-r'(xtfl) — £ (xs) + ds).

o X541 = x* for random t € {1,2,..., m}.
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Stochastic Variance-Reduced Gradient

SVRG algorithm:
o Start with xg

o fors=0,1,2...
o di =5 3 /()
o XV =x,

o fort=1,2,...m

e Randomly pick ir € {1,2,..., N}
o xt=xt"1— at(f,-r'(xtfl) — £ (xs) + ds).

o X541 = x* for random t € {1,2,..., m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs.
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Outline

© Non-Smooth Objectives
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Motivation: Sparse Regularization

@ Recall the regularized empirical risk minimization problem:

xERP

N
o1
min N;L(x,a;,b;) +  Ar(x)

data fitting term + regularizer

@ Often, regularizer r is used to encourage sparsity pattern in x.
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Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

xERP

N
o1
min N;L(x,a;,b;) +  Ar(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x.

For example, ¢1-regularized least squares,

min | Ax — b]|* + Alx[lx

Regularizes and encourages sparsity in x
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Motivation: Sparse Regularization

@ Recall the regularized empirical risk minimization problem:
L
min — L(x,aj,b;)) + Ar(x
min 37 2 L 20 ) ()
data fitting term + regularizer
@ Often, regularizer r is used to encourage sparsity pattern in x.
@ For example, £1-regularized least squares,
min [|Ax — b]? + Alx[s

@ Regularizes and encourages sparsity in x
@ The objective is non-differentiable when any x; = 0.
@ Subgradient methods are optimal (slow) black-box methods.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

xERP

N
o1
min N;L(x,a;,b;) +  Ar(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x.

For example, ¢1-regularized least squares,
min | Ax — b]|* + Alx[lx

Regularizes and encourages sparsity in x
The objective is non-differentiable when any x; = 0.
Subgradient methods are optimal (slow) black-box methods.

Faster methods for specific non-smooth problems?
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@ Smoothing: replace non-smooth f with smooth f..

@ Apply a fast method for smooth optimization.
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@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.

@ Smooth approximation to the absolute value:

Ix| = Vx%2 4.
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Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.

@ Smooth approximation to the absolute value:

Ix| = Vx%2 4.
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Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.
@ Smooth approximation to the absolute value:

x|~ VxZ 1.
@ Smooth approximation to the max function:
max{a, b} ~ log(exp(a) + exp(b))
@ Smooth approximation to the hinge loss:

0 x>1
max{0,x} ~ ¢ 1 — x? t<x<l1
(1-t)2+21-t)(t—x) x<t
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Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.
@ Smooth approximation to the absolute value:

Ix| & VX2 + .

@ Smooth approximation to the max function:
max{a, b} ~ log(exp(a) + exp(b))
@ Smooth approximation to the hinge loss:
0 x>1
max{0,x} ~ ¢ 1 — x? t<x<l1

(1-t)2+21-t)(t—x) x<t

@ Generic smoothing strategy: strongly-convex regularization of
convex conjugate.[Nesterov, 2005]
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Discussion of Smoothing Approach

@ Nesterov [2005] shows that:

o Gradient method on smoothed problem has O(1/1/t)
subgradient rate.
o Accelerated gradient method has faster O(1/t) rate.
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Discussion of Smoothing Approach

@ Nesterov [2005] shows that:

o Gradient method on smoothed problem has O(1/1/t)
subgradient rate.
o Accelerated gradient method has faster O(1/t) rate.

@ In practice:

o Slowly decrease level of smoothing (often difficult to tune).
o Use faster algorithms like L-BFGS, SAG, or SVRG.
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Discussion of Smoothing Approach

@ Nesterov [2005] shows that:
o Gradient method on smoothed problem has O(1/1/t)
subgradient rate.
o Accelerated gradient method has faster O(1/t) rate.
@ In practice:
o Slowly decrease level of smoothing (often difficult to tune).
o Use faster algorithms like L-BFGS, SAG, or SVRG.
@ You can get the O(1/t) rate for min, max{fi(x)} for f; convex
and smooth using mirror-prox method.[Nemirovski, 2004]
o See also Chambolle & Pock [2010].
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@ Re-write non-smooth problem as constrained problem.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Converting to Constrained Optimization

@ Re-write non-smooth problem as constrained problem.

@ The problem
mXin f(x)+ Al|x]||1,

is equivalent to the problem
min f(xT —x7)+ A x4 X
L, R AN ),

or the problems

min f(x)+)\Zy;, |min f(x)+ Ay

—y<x<y [x[l1<y
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Converting to Constrained Optimization

@ Re-write non-smooth problem as constrained problem.

@ The problem
mXin f(x)+ Al|x]||1,

is equivalent to the problem

xt>0,x—>0

min f(x*—xf)—l-)\Z(xfr +x:),

or the problems

min  f(x)+ A i min  f(x)+ A
—y<x<y () Zy lIxll <y 0 7

@ These are smooth objective with ‘simple’ constraints.

in f(x).
g )
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Optimization with Simple Constraints
@ Recall: gradient descent minimizes quadratic approximation:

1
xT1 = argmin {f(xt) + Vf(xt)T(y —x+ =y - Xt||2} )
y 20[[—
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Optimization with Simple Constraints
@ Recall: gradient descent minimizes quadratic approximation:

1
xT1 = argmin {f(xt) + VAT (y = xH) + =—|ly — Xt||2} )
y 20[t
@ Consider minimizing subject to simple constraints:

1
xt1 = argmin {f(xt) + Vf(xt)T(y — x4+ —|y - Xt||2} )
yeC 2041»
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Optimization with Simple Constraints

@ Recall: gradient descent minimizes quadratic approximation:

1
xT1 = argmin {f(xt) + Vf(xt)T(y —x+ =y - Xt||2} )
y 20[[—

@ Consider minimizing subject to simple constraints:

1
xt1 = argmin {f(xt) + Vf(xt)T(y — x4+ —|y - Xt||2} )
yeC 20ét

@ Equivalent to projection of gradient descent:
xtGD = x' — a;VF(xh),

xt1 = argmin { Iy = x£° }
yeC
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Gradient Projection

f(x)

Feasible Set
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Gradient Projection
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Gradient Projection

Feasible Set

x - of’(x)
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Gradient Projection

Feasible Set

x - af’(x)
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Gradient Projection

Feasible Set
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Discussion of Projected Gradient

@ Projected gradient has same rate as gradient method!
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@ Projected gradient has same rate as gradient method!

e Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG).
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Discussion of Projected Gradient

@ Projected gradient has same rate as gradient method!

e Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG).

@ For projected Newton, you need to do an expensive projection
under || - ||#,.
e Two-metric projection methods allow Newton-like strategy for
bound constraints.
e Inexact Newton methods allow Newton-like like strategy for
optimizing costly functions with simple constraints.
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Projections onto simple sets:
e argmin,~q ||y — x|| = max{x, 0}
e argmin;<, <, ||y — x|| = max{/,min{x, u}}

o argmin,r,_p ||y — x|| = x+ (b— a’x)a/| al|?.

Non-Smooth Objectives
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Projection Onto Simple Sets

Projections onto simple sets:
e argmin,~q ||y — x|| = max{x, 0}
e argmin;<, <, ||y — x|| = max{/,min{x, u}}
o argmin,r,_p ||y — x|| = x+ (b— a’x)a/|al?.
a’x>bh

. X
° argminaryzy ly = xf = {x+ (b—aTx)a/||a? aTx < b
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Projection Onto Simple Sets

Projections onto simple sets:

e argmin,~q ||y — x|| = max{x, 0}

e argmin;<, <, ||y — x|| = max{/,min{x, u}}

o argmin,r,_p ||y — x|| = x+ (b— a’x)a/| al|?.

) x a’x>bh
I= {x+ (b—a'x)a/||a|> a’x<b

o argminy, <. [ly — x| = 7x/||x]|.

o argmin,r >, |y — x
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Projection Onto Simple Sets

Projections onto simple sets:
e argmin,~q ||y — x|| = max{x, 0}
e argmin;<, <, ||y — x|| = max{/,min{x, u}}

argmin,r,_p |y — x| = x + (b — a’x)a/| al|?.

| = X a’x>bh
| x+(b—aTx)a/l|a)? aTx<b
argminy <. ly — x|l = 7x/||x]|.

Linear-time algorithm for ¢1-norm ||y||1 < 7.

argmin, >, lly — x



Motivation

Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Projection Onto Simple Sets

Projections onto simple sets:

argmin, ~q ||y — x|| = max{x, 0}

argmin;<, <, ||y — x|| = max{/, min{x, u}}

argmin,,_ ||y — x|| = x + (b — aTx)a/|a||*

. X a’x>bh
argminaryzp [y =l = {x 4 (b—aTx)a/|la|]? aTx <b
argminy <. ly — x|l = 7x/||x]|.

Linear-time algorithm for ¢1-norm ||y||1 < 7.

Linear-time algorithm for probability simplex y >0,y = 1.
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Projection Onto Simple Sets

Projections onto simple sets:
e argmin,~q ||y — x|| = max{x, 0}
e argmin;<, <, ||y — x|| = max{/,min{x, u}}

o argmin,r,_p ||y — x|| = x+ (b— a’x)a/| al|?.

sy ¥l = 1 b
@ argmin,r —x|| =
e x+ (b= aTx)a/lal? aTx<b
® argmin|, <, lly — x|| = 7x/]|x||-
@ Linear-time algorithm for ¢1-norm ||y||; < 7.
@ Linear-time algorithm for probability simplex y > 0,5y = 1.

@ Intersection of simple sets: Dykstra's algorithm.

We can solve large instances of problems with these constraints.
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Proximal-Gradient Method

@ A generalization of projected-gradient is Proximal-gradient.
@ The proximal-gradient method addresses problem of the form

mXin f(x) + r(x),

where f is smooth but r is a general convex function.
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Proximal-Gradient Method

@ A generalization of projected-gradient is Proximal-gradient.
@ The proximal-gradient method addresses problem of the form

mXin f(x) + r(x),

where f is smooth but r is a general convex function.
@ Applies proximity operator of r to gradient descent on f:

xEP = xt — a; VF(xp),

1
x4 = argmin {3lly ~ x| +ar(y)}.
y
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Proximal-Gradient Method

@ A generalization of projected-gradient is Proximal-gradient.
@ The proximal-gradient method addresses problem of the form
min f(x) + r(x),
X
where f is smooth but r is a general convex function.
@ Applies proximity operator of r to gradient descent on f:
XtGD = x' — a;VF(x),
t4+1 - J1 GD |2
X4 = argmin 4 2 ly = xSP|2 + ar(y) {
y
@ Equivalent to using the approximation
. 1
et = argmin { 1) 4 V76T =) + 5y = x40 |
y
o Convergence rates are still the same as for minimizing f.
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

. 1
pro Iy] = argmin r(x) + 2 x — v
xERP
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

. 1
pro Iy] = argmin r(x) + 2 x — v
xERP

@ For L1-regularization, we obtain iterative soft-thresholding:

Xt = softThreshy\[x! — aVF(x?)].
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Proximal Operator, Iterative Soft Thresholding
@ The proximal operator is the solution to
. 1 )
prox,[y] = argmin r(x) + §HX - y|*
x€RP

@ For L1-regularization, we obtain iterative soft-thresholding:
x' = softThreshy [x! — aVf(x)].

@ Example with A = 1:
Input Threshold Soft-Threshold

0.6715
—1.2075
0.7172
1.6302
0.4889
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

. 1
pro Iy] = argmin r(x) + 2 x — v
xERP

@ For L1-regularization, we obtain iterative soft-thresholding:
x' = softThreshy [x! — aVf(x)].

@ Example with A = 1:

Input Threshold Soft-Threshold
0.6715 0
—1.2075 —1.2075
0.7172 0
1.6302 1.6302

0.4889 0
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

. 1
pro Iy] = argmin r(x) + 2 x — v
xERP

@ For L1-regularization, we obtain iterative soft-thresholding:
x' = softThreshy [x! — aVf(x)].

@ Example with A = 1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302

0.4889 0 0



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(x) = : :
oo ifxé¢C
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Special case of Projected-Gradient Methods

o Projected-gradient methods are another special case:

0 ifxecC
r(x) = . ,
oo ifxé¢C

gives x*1 = projecto[xt — aVF(x")],
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Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(x) = : ;
oo ifxé¢C

gives x'1 = projecto[xt — aVFf(x?)],
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Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxeC
r(x) = . )
oo ifx¢C

gives xt1 = projecto[xt — aVF(x?)],

N
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Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(x) = : :
oo ifx¢C

gives x*1 = projecto[xt — aVF(x?)],

Feasible Set
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Special case of Projected-Gradient Methods

o Projected-gradient methods are another special case:

0 ifxecC
o ifx¢cC’

glves x*1 = projecto[xt — aVF(x?)],
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@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:
@ L1-Regularization.
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@ We can efficiently compute the proximity operator for:

@ L1-Regularization.
@ Group /1-Regularization.
© Lower and upper bounds.
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Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:
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Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:
@ L1-Regularization.
@ Group /1-Regularization.
© Lower and upper bounds.
@ Small number of linear constraint.
@ Probability constraints.
Q A few other simple regularizers/constraints.
@ Can solve these non-smooth/constrained problems as fast as
smooth /unconstrained problems!

e We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric projection, inexact
proximal operators, SAG, SVRG).
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Alternating Direction Method of Multipliers

@ Alernating direction method of multipliers (ADMM) solves:

i f .
aTin_ FO)+10)

@ Alternate between prox-like operators with respect to f and r.
@ Can introduce constraints to convert to this form:

min f(Ax) +r(x) & X'Qify f(x) +r(y),

mXin f(x)+r(Bx) < yrEiBr)X f(x)+r(y)-

@ If prox can not be computed exactly: Linearized ADMM.
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requires compact C, takes convex combination of xt and x*1.
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Frank-Wolfe Method

@ In some cases the projected gradient step

<1 — argmin {f(xf) VR Ty — x4y xfuz} |
yeC 2C¥t

may be hard to compute (e.g., dual of max-margin Markov
networks).

@ Frank-Wolfe method simply uses:

xt*+1 = argmin {f(xt) + VF(xH)T(y - xf)} )

yeC
requires compact C, takes convex combination of xt and x*1.
@ lterate can be written as convex combination of vertices of C.

@ O(1/t) rate for smooth convex objectives, some linear
convergence results for smooth and strongly-convex.[Jaggi, 2013]
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Alternatives to Quadratic/Linear Surrogates

@ Mirror descent uses the iterations[Beck & Teboulle, 2003]

X

1
t1 — argmin {f(x) + VF(x)T(y — xb) + D(Xt,y)} ,
yec 20
where D is a Bregman-divergence:
o D = ||x* — y||? (gradient method).
o D= |x* — y||?, (Newton's method).
o D=>)xt Iog();—":) — >:(xf — yi) (exponentiated gradient).
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Alternatives to Quadratic/Linear Surrogates

@ Mirror descent uses the iterations[Beck & Teboulle, 2003]

Xt — argmin {f(x) + Vf(X)T(y - Xt) + 1D(Xtv)’)} )
yec 20[1-

where D is a Bregman-divergence:
o D = ||x* — y||? (gradient method).
o D= |x* — y||?, (Newton's method).

o D=>)xt Iog();—":) — >:(xf — yi) (exponentiated gradient).
e Mairal [2013,2014] considers general surrogate optimization:

x"1 = argmin {g(y)} .
yeC

where g upper bounds f, g(x') = f(x?), Vg(x') = Vf(x"),
and Vg — Vf is Lipschitz-continuous.
o Get O(1/k) and linear convergence rates depending on g — f.
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@ Stronly-convex problems have smooth duals.

@ Solve the dual instead of the primal.
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Dual Methods

@ Stronly-convex problems have smooth duals.
@ Solve the dual instead of the primal.

@ SVM non-smooth strongly-convex primal:

N
. 1
min C E 1 max{0,1 — bja; x} + §||XH2
=

@ SVM smooth dual:

min faTAATa — Za,

0<a<C 2

@ Smooth bound constrained problem:

o Two-metric projection (efficient Newton-liked method).
o Randomized coordinate descent (part 2 of this talk).
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Summary

Summary:

Part 1: Convex functions have special properties that allow us
to efficiently minimize them.

Part 2: Gradient-based methods allow elegant scaling with
dimensionality of problem.

Part 3: Stochastic-gradient methods allow scaling with
number of training examples, at cost of slower convergence
rate.

Part 4: For finite datasets, SAG fixes convergence rate of

stochastic gradient methods, and SVRG fixes memory
problem of SAG.

Part 5: These building blocks can be extended to solve a
variety of constrained and non-smooth problems.
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