Artistic Stylization of Images and Video Part III – Anisotropy and Filtering Eurographics 2011

Jan Eric Kyprianidis

Hasso-Plattner-Institut, University of Potsdam, Germany

Image/Video Abstraction

- Stylized Augmented Reality for Improved Immersion Fischer et al., 2005
- Real-time Video Abstraction Winnemöller et al., SIGGRAPH 2006
- Coherent Line Drawings Kang et al., NPAR 2007
- Structure Adaptive Image Abstraction Kyprianidis & Döllner, EG Theory and Practice of Computer Graphics 2008
- Flow-based Image Abstraction

Kang et al., Transactions on Visualization and Computer Graphics 2009

- Artistic Edge and Corner Preserving Smoothing Papari et al., IEEE Transactions on Image Processing 2007
- Image and Video Abstraction by Anisotropic Kuwahara Filtering Kyprianidis et al., Pacific Graphics 2009
- Shape-simplifying Image Abstraction Kang & Lee, Pacific Graphics 2008
- Image and Video Abstraction by Coherence-Enhancing Filtering Kyprianidis & Kang, Eurographics 2011

Jan Eric Kyprianidis

Stylized Augmented Reality for Improved Immersion Fischer et al. (2005)

Non-photorealistic display of both the camera image and virtual objects:

- Abstraction: Bilateral filter applied to Gaussian pyramid and then upsampled
- Edges: Canny edge detector + morphological dilation

Stylized augmented reality

Image credit: Fischer et. al. (2005)

Real-time Video Abstraction Winnemöller et al. (2006)

- Abstraction: Multiple iterations of xy-separable bilateral filter + color quantization
- **Edges:** Difference of Gaussians + thresholding

Coherent Line Drawings Kang et al. (2007)

Image credit: Kang et. al. (2007)

 Edges: 1D difference of Gaussians directed by flow field + flow-guided smoothing and thresholding.

Flow-based filtering

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Structure Adaptive Image Abstraction Kyprianidis & Döllner (2008)

Orientation-aligned Bilateral Filter copyright Anthony Santella Abstraction: Multiple iterations of orientationaligned bilateral filter Bilateral Bilateral Filter Filter Color Edges: separable flow-based in in Quantization Gradient Tangent Direction Direction difference of Gaussians Output Input DoG Smoothing Local orientation and an anisotropy Local Filter along Orientation in **Flow Field** measure derived from the Estimation Gradient and Thresholding Direction smoothed structure tensor are used to guide the bilateral and difference Separated Flow-based DoG Filter of Gaussians filters

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Flow-based Image Abstraction Kang et al. (2009)

- Abstraction: Multiple iterations of flow-based bilateral filter
- Edges: (separable) flowbased difference of Gaussians
- Local orientation estimation of both techniques is based on the edge tangent flow (ETF)

Image credit: Kang et. al. (2009)

Artistic Edge and Corner Preserving Smoothing Papari et al. (2009)

- Generalization of the Kuwahara filter. Creates output with a painterly look.
- Addresses two key issues of the original Kuwahara filter:
 - Rectangular subregions
 - Unstable subregion selection process

Credit for images: Papari et. al. (2009)

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Anisotropic Kuwahara Filtering Kyprianidis et al. (2009)

- Further generalization of the Kuwahara filter.
- Adaptation of the shape, scale and orientation of the filter to the local image structure.

Original image by Paulo Brandão@flickr.com

- PDE-based technique that simultaneous simplifies colors and shape:
 - Constrained mean curvature flow
 - Shock filter

Input

20 iterations

40 iterations

Image credit: Kang & Lee (2008) / original image by Tambako the Jaguar@flickr.com

Artistic Stylization of Images and Video • Part III • Eurographics 2011

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Difference of Gaussians

Difference of Gaussians:

- Laplacian of Gaussian (LoG)
- Isotropic Difference of Gaussians (DoG)
- Flow-based Difference of Gaussians
- Separable Flow-based
 Difference of Gaussians

DoG Edges vs Canny Edges

Original image from USC-SIPI Image Database

Flow-based difference of Gaussians

Canny Edges

Edge Detection

Edge profile without noise:

Edge Detection

Edge profile with noise:

Jan Eric Kyprianidis

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

In 2D the second derivative corresponds to the Laplacian:

$$L = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Similar to the second derivative the Laplacian is sensitive to noise. To make the Laplacian less sensitive to noise, apply a Gaussian to the image first:

$$LoG = L \star G_{\sigma}$$

where G_{σ} is a 2D Gaussian with standard deviation σ :

$$G_{\sigma}(x, y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Jan Eric Kyprianidis

A Laplacian of Gaussian can be approximated by a difference of Gaussians:

Difference of Gaussians (DoG) Marr & Hildreth (1980)

Zero-crossing are found by thresholding:

An approach to created smooth edges was proposed by Winnemöller et al.:

$$D(\sigma_e, \tau, \varphi_e) = \begin{cases} 1 & \text{if } \left(G_{\sigma_e} - \tau G_{1.6 \cdot \sigma_e}\right) > 0\\ 1 + \tanh(\varphi_e \cdot G_{\sigma_e} - \tau G_{1.6 \cdot \sigma_e}) & \text{otherwise} \end{cases}$$

- The parameter τ controls the sensitivity to noise. A typical values are $\tau = 0.98$ or $\tau = 0.99$.
- The falloff parameter φ_e determines the sharpness of edge representations, typical values are $\varphi_e \in [0.75, 5.0]$.

Smooth DoG Edges Winnemöller et al. (2006)

Credit for slide: H. Winnemöller

Difference of Gaussians Guided by Local Image Structure

Local Structure Estimation:

- Edge Tangent Flow
- Structure Tensor

DoG Guided by Local Image Structure:

- Flow-based DoG
- Separable flow-based DoG

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Edge Tangent Flow Kang et al. (2007)

Edge Tangent Flow (ETF):

- Smoothly varying vector field
- Feature-preserving flow

Input image

Image credit: Kang et al. (2007)

Edge Tangent Flow

Jan Eric Kyprianidis

+0: a calculated

Weighted vector smoothing similar to bilateral filter:

Multiple
iterations (
$$\approx$$
 3)
$$t^{n+1}(x) = \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot w_g(x, y) \cdot w_g(x, y) \cdot w_g(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot w_g(x, y) \cdot w_g(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot w_g(x, y) \cdot w_g(x, y) \cdot w_g(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot w_g(x, y) \cdot w_g(x, y) \cdot w_g(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot w_g(x, y) \cdot w_g(x, y) \cdot w_g(x, y) \cdot w_g(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot w_g(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot w_g(x, y) - \frac{1}{k} \sum_{y \in \Omega(x)} (y) \cdot w_g(x, y) \cdot w_g$$

Image credit: Kang et al. (2007)

-

Edge Tangent Flow Kang et al. (2007)

$$t^{n+1}(x) = \frac{1}{k} \sum_{y \in \Omega(x)} \phi(x, y) \cdot t^n(y) \cdot w_s(x, y) \cdot w_m(x, y) \cdot w_d(x, y)$$
Assure different vectors point in the same direction
$$\phi(x, y) = \text{sign}(t^n(x) \cdot t^n(y))$$

$$w_s(x, y) = \begin{cases} 1 & |x - y| < r \\ 0 & \text{else} \end{cases}$$
Restrict filtering to a predefined radius
More weight to vectors with higher gradient magnitude
$$w_m(x, y) = \frac{1}{2} [1 + \tanh(|g(x)| - |g(y)|)]$$

$$w_d(x, y) = |t^n(x) \cdot t^n(y)|$$
More weight for vectors with direction similar to current filter origin

Flow-based Difference of Gaussians Kang et al. (2007)

Structure Tensor

Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ denote the input image and let

$$\frac{\partial f}{\partial x} = \left(\frac{\partial R}{\partial x} \quad \frac{\partial G}{\partial x} \quad \frac{\partial B}{\partial x} \right)^t$$

be the partial derivatives of f.

The structure tensor is then defined by:

These can be implemented for example using Gaussian derivatives or the Sobel filter.

$$(g_{ij}) = J^{t}J = \begin{pmatrix} \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial x} \right| & \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right| \\ \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right| & \left| \frac{\partial f}{\partial y}, \frac{\partial f}{\partial y} \right| \end{pmatrix} =: \begin{pmatrix} E & F \\ F & G \end{pmatrix} \qquad \begin{array}{c} \text{In differential geometry the structure tensor is also known as first fundamental form} \end{cases}$$

 $\frac{\partial f}{\partial y} = \left(\frac{\partial R}{\partial y} \quad \frac{\partial G}{\partial y} \quad \frac{\partial B}{\partial y}\right)^t$

is a 2 × 2 symmetric positive semidefinte matrix

The structure tensor

Structure Tensor

The induced quadratic form of the structure tensor measures the squared rate of change of f in direction of a vector $n = (n_x, n_y)$:

$$S(n) = En_x^2 + 2Fn_xn_y + Gn_y^2$$

The extremal values of S(n) on the unit circle correspond to the eigenvalues of (g_{ij}) :

$$\lambda_{1,2} = \frac{E + G \pm \sqrt{(E - G)^2 + 4F^2}}{2}$$

The corresponding eigenvectors are:

Eigenvector of major eigenvalue. Direction of maximum change: gradient direction.

$$v_1 = \begin{pmatrix} F \\ \lambda_1 - E \end{pmatrix} \quad v_1$$

$$v_2 = \begin{pmatrix} \lambda_1 - E \\ -F \end{pmatrix}$$

1

г.

Eigenvector of minor eigenvalue. Direction of minimum change: tangent direction.

The eigenvectors corresponding to the minor eigenvalues of the structure define a vector field. Typically this field is not smooth:

Smoothing the structure tensor prior to eigenanalysis with a Gaussian filter removes discontinuities in the vector field:

Eigenvector field of the smoothed structure tensor is similar to the edge tangent flow, but allows a more efficient implementation:

3 iterations of edge tangent flow filter

Eigenvector field of the smoothed structure tensor

Split flow-based difference of Gaussians into two passes:

- 1st Pass: one-dimensional DoG in direction of the major eigenvector
- 2nd Pass: smoothing along stream lines defined by minor eigenvector

2nd Pass

Bilateral Filter

Bilateral Filter:

- Classical Bilateral Filter
- xy-Separable Bilateral Filter
- Orientation-aligned
 Bilateral Filter
- Flow-based Bilateral Filter

The bilateral filter is a nonlinear operation that smoothes images while preserving edges:

$$G_{\sigma}(t) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{t^2}{2\sigma^2}\right)$$

Jan Eric Kyprianidis

The bilateral filter is a powerful tool, but computationally very expensive $(O(r^2) \text{ per pixel})$.

xy-Separable Bilateral Filter Pham & van Vliet (2005)

Eurographics 2011

-

1st Pass

2nd Pass

xy-Separable Bilateral Filter Pham (2006)

- Much faster than classical bilateral filter
- But creates noticeable artifacts!

Full kernel bilateral filter

xy-separable bilateral filter

 Align separable bilateral filter to local orientation derived from the smoothed structure tensor

1st Pass

Orientation-aligned Bilateral Filter Kyprianidis & Döllner (2008)

Less artifacts. Very well suited for abstraction.

Full kernel bilateral filter

Orientation-aligned bilateral filter

Jan Eric Kyprianidis

Orientation-aligned Bilateral Filter Kyprianidis & Döllner (2008)

 Linear smoothing of neighboring pixel values creates smooth color boundaries

Flow-based Bilateral Filter Kang et al. (2009)

Jan Eric Kyprianidis

Artistic Stylization of Images and Video • Part III • Eurographics 2011

Flow-based Bilateral Filter Kang et al. (2009)

Flow-based bilateral filter

Excellent preservation of highly anisotropic image features

Input image

Bilateral filter

Image credit: Kang et al. (2009)

Color Quantization Winnemöller et al. (2006)

Color Quantization Winnemöller et al. (2006)

Credit for slide: H. Winnemöller

Input

Apply quantization to luminance channel

Result

Luminance Mapping tanh per bin Q(.)Hard **q** bins q_2 q_1 Soft Luminance q_0

Credit for slide: H. Winnemöller

Color Quantization Winnemöller et al. (2006)

Image credit: Winnemöller et al. (2006)

Abstracted

Sharp Quantization (*Toon*-like)

Smooth Quantization (*Paint*-like)

Kuwahara Filter

Kuwahara Filter:

- Classical Kuwahara Filter
- Kuwahara Filter with Weighting Functions
- Generalized Kuwahara Filter
- Anisotropic Kuwahara Filter
 - Convolution-based Weighting Functions
 - Polynomial Weighting Functions

1

Kuwahara Filter

$$W_{0} = [x_{0} - r, x_{0}] \times [y_{0}, y_{0} + r]$$

$$W_{1} = [x_{0}, x_{0} + r] \times [y_{0}, y_{0} + r]$$

$$W_{2} = [x_{0}, x_{0} + r] \times [y_{0} - r, y_{0}]$$

$$W_{3} = [x_{0} - r, x_{0}] \times [y_{0} - r, y_{0}]$$

Jan Eric Kyprianidis

Artistic Stylization of Images and Video • Part III • Eurographics 2011

Kuwahara Filter

For every subregion W_i calculate the mean

$$m_i = \frac{1}{|W_i|} \sum_{(x,y) \in W_i} I(x,y)$$

and the variance:

$$s_i^2 = \frac{1}{|W_i|} \sum_{(x,y) \in W_i} (I(x,y) - m_i)^2$$

The output of the Kuwahara filter is then defined as the mean of a subregion with minimum variance:

$$F(x_0, y_0) \coloneqq m_k, \qquad k = \underset{i=0,...,3}{\operatorname{argmin}} s_i$$

Jan Eric Kyprianidis

Kuwahara Filter

Kuwahara filter for a corner

Kuwahara Filter

Kuwahara filter for an edge

Kuwahara Filter

Kuwahara filter for an homogenous neighborhood

Kuwahara Filter

Original image by Keven Law@flickr.com

Kuwahara Filter

Kuwahara Filter with Weighting Functions

Jan Eric Kyprianidis

Artistic Stylization of Images and Video • Part III • Eurographics 2011

Then the mean is given by:

$$m_{i} = \frac{1}{|W_{i}|} \sum_{(x,y) \in W_{i}} I(x,y)$$

= $\frac{1}{|W_{i}|} \sum_{(x,y) \in \mathbb{Z}^{2}} I(x,y) \cdot W_{i}(x - x_{0}, y - y_{0})$

And the variance is given by:

$$s_i^2 = \frac{1}{|W_i|} \sum_{\substack{(x,y) \in W_i \\ |w_i|}} (I(x,y) - m_i)^2$$
$$= \frac{1}{|w_i|} \sum_{\substack{(x,y) \in \mathbb{Z}^2}} (I(x,y) - m_i)^2 \cdot w_i (x - x_0, y - y_0)$$

Idea: Create smooth weighting functions over a disc those sum is a Gaussian

Generalized Kuwahara Filter Weighting Function Construction

Artistic Stylization of Images and Video • Part III • Eurographics 2011

Generalized Kuwahara Filter

Then the mean is given by:

$$m_{i} = \frac{1}{|K_{i}|} \sum_{(x,y) \in \mathbb{Z}^{2}} I(x,y) \cdot K_{i}(x - x_{0}, y - y_{0})$$

And the variance is given by:

$$s_i^2 = \frac{1}{|K_i|} \sum_{(x,y) \in \mathbb{Z}^2} (I(x,y) - m_i)^2 \cdot K_i(x - x_0, y - y_0)$$

The output of the generalized Kuwahara Filter is now defined by:

$$F(x_0, y_0) = \sum_{i=0}^{N-1} s_i^{-q} m_i / \sum_{i=0}^{N-1} s_i^{-q}$$

The parameter q is a tuning parameter that controls the sharpness of color boundaries. A typical value is q = 8.

$$F(x_0, y_0) = \sum_{i=0}^{N-1} s_i^{-q} m_i / \sum_{i=0}^{N-1} s_i^{-q}$$

Sectors low high
variance:
 $s_i \to 0 \Rightarrow s_i^{-q} \to \infty$
(i.e. most influence
to sum)
Sectors with high
variance:
 $s_i \gg 0 \Rightarrow s_i^{-q} \approx 0$
(i.e. almost no
influence to sum)

Generalized Kuwahara Filter

Generalized Kuwahara filter for a corner

Sector with **small variance**. All pixels of this sector are similar. This sector contributes most to the final result

Sectors with **high variance**. They all contain pixels from both color regions. These sectors have almost no influence.

Generalized Kuwahara Filter

Generalized Kuwahara filter for an edge

Multiple sectors with **small variance**. All pixels of the sectors lie on the same side of the edge. Result is a weighted sum of the (weighted) mean values of the sectors.

Regions with **high variance**. They all contain pixels from both sides of the edge. These sector have almost no influence.

Filter shape is similar to a truncated Gaussian

Generalized Kuwahara filter for an homogenous neighborhood

Generalized Kuwahara Filter

Original image by Keven Law@flickr.com

Generalized Kuwahara Filter

Anisotropic Kuwahara Filter Kyprianidis et al. (2009)

Artistic Stylization of Images and Video • Part III • Eurographics 2011

1

Anisotropic Kuwahara Filter Algorithm Overview

Elliptic filter shape (Pham, 2006)

$$a = \frac{v+A}{v} \qquad b = \frac{v}{v+A}$$

Here, $A \in [0,1]$ denotes the anisotropy measure derived from the structure tensor.

 $v \in (0, \infty)$ is a user parameter that controls the eccentricity of the ellipse. A typical choice is v = 1.

Anisotropic Kuwahara Filter

Anisotropic Kuwahara filter for a corner

Sector with **small variance**. All pixels of this sector are similar. This sector contributes most to the final result

Anisotropic Kuwahara Filter

Anisotropic Kuwahara filter for an edge

Multiple sectors with **small variance**. All pixels of the sectors lie on the same side of the edge. Result is a weighted sum of the (weighted) mean values of the sectors.

Regions with **high variance**. They all contain pixels from both sides of the edge. These sector have almost no influence.

Filter shape is adapted to anisotropic image structure

Anisotropic Kuwahara Filter

Anisotropic Kuwahara filter for an homogenous neighborhood

Anisotropic Kuwahara Filter

Anisotropic Kuwahara filter for a homogenous neighborhood

Anisotropic Kuwahara Filter

Original image by Keven Law@flickr.com

Anisotropic Kuwahara Filter

Jan Eric Kyprianidis

Artistic Stylization of Images and Video • Part III • Eurographics 2011
Eurographics 2011

Anisotropic Kuwahara Filter Polynomial Weighting Functions

Artistic Stylization of Images and Video • Part III • Eurographics 2011

Shape-simplifying Image Abstraction Kang & Lee (2008)

Mean curvature flow (Alvarez et al., 1992):

Eurographics 2011

Shape-simplifying Image Abstraction Kang & Lee (2008)

Mean curvature flow

Image credit: Kang & Lee (2008)

Input

20 iterations

60 iterations

Shape-simplifying Image Abstraction Kang & Lee (2008)

Shock filter (Osher and Rudin, 1990; Alvarez and Mazorra 1994):

Input

In the influence zone of a maximum, the Laplacian ΔI is negative and, therefore, a dilation is performed.

$$I_t = -\operatorname{sign}(\Delta G_{\sigma} \star I) |\nabla I|$$

In the influence zone of a minimum, the Laplacian ▲I is positive, which results in an erosion.

Algorithm 1 Image Abstraction by MCF

loop for 1 to k **do** $I \leftarrow MeanCurvatureFlow(I)$ **end for** $I \leftarrow ShockFiltering(I)$ **end loop** Eurographics 2011

Shape-simplifying Image Abstraction Kang & Lee (2008)

Image abstraction by mean curvature flow

Image credit: Kang & Lee (2008)

Input

20 iterations

60 iterations

Shape-simplifying Image Abstraction Kang & Lee (2008)

Constrained mean curvature flow:

Eurographics 2011 LLANDUDNO UK

Algorithm 2 Image Abstraction by CMCF

loop

for 1 to k do $\mathbf{t} \leftarrow TVF(I)$ $I \leftarrow ConstrainedMeanCurvatureFlow(I, \mathbf{t})$ end for $I \leftarrow ShockFiltering(I)$ end loop

Shape-simplifying Image Abstraction Kang & Lee (2008)

Image abstraction by constrained mean curvature flow

Image credit: Kang & Lee (2008)

60 iterations image abstraction by MCF

60 iterations image abstraction by CMCF