Artistic Stylization of Images and Video

Part II – Vision for Stylisation Eurographics 2011

John Collomosse

Centre for Vision Speech and Signal Processing (CVSSP), University of Surrey, United Kingdom

Visual Interest and NPR: an Evaluation and Manifesto

A. Santella and D. DeCarlo, NPAR 2004

Stylization and Abstraction of Photographs

D. Decarlo, A. Santella, SIGGRAPH 2002

Segmentation-based 3D Artistic Rendering

A. Kolliopoulos, J. Wang, A. Hertzmann, EGSR 2006.

Synergism in Low Level Vision (EDISON)

C. Christoudias, B. Georgescu, P. Meer, ICPR 2002.

SIFT flow: dense correspondence across difference scenes

C. Liu, J. Yuen, A. Torralba, J. Sivic, W. Freeman, ECCV 2008.

High Accuracy Optical Flow Estimation Based on a Theory for Warping

T. Brox, A. Bruhn, N Papenberg, J. Weickert, ECCV 2004.

What dreams may come (movie)

Dir. V. Ward. Universal. 1998.

Non-photorealistic Rendering SIGGRAPH Course notes

D. Green, SIGGRAPH 1999

Processing Images and Video for Impressionist Effect

P. Litwinowicz, SIGGRAPH 1997

Video Tooning

J. Wang, Y. Xu, H. Shum, M. Cohen, SIGGRAPH 2004

Painterly Rendering for Video and Interaction

A. Hertzmann, K. Perlin. NPAR 2000.

Painterly Rendering for Animation

B. Meier. SIGGRAPH 1996

Image Analogies

A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin. SIGGRAPH 2001

Directional Texture Transfer

H. Lee, S. Seo, S. Ryoo, K. Yoon. NPAR 2010.

Empathic Painting: Interative stylization using observed emotional state

M. Shugrina, M. Betke, J. Collomosse. NPAR 2006.

Genetic Paint: A Search for Salient Paintings

J. Collomosse, P. Hall. EvoMUSART 2005 (J. IJAIT 2006).

The Art of Scale Space

J. A. Bangham, S. Gibson, R. Harvey. BMVC 2003.

Visual interest and NPR: An evaluation and manifesto

A. Santella, D. DeCarlo. NPAR 2004.

Segmentation-based 3D Artistic Rendering

A. Kolliopoulos, J. Wang, A. Hertzmann. EGSR 2006.

Stylized Video Cubes

A. Klein, P. Sloan, A. Colburn, A. Finkelstein, M. Cohen. EG SCA 2002.

Image and Video based Painterly Animation

J. Hayes and I. Essa, NPAR 2004.

- Stroke Surfaces: Temporally Coherent Artistic Animations from Video
 J. Collomosse, D. Rowntree, P. Hall. IEEE TVCG 2005.
- Video Watercolorization using Bidirectional Texture Advection
 - A. Bousseau, D. Neyret, J. Thollot, D. Salesin
- Video Analysis for Cartoon-like Special Effects
 - J. Collomosse, D. Rowntree, P. Hall. BMVC 2003.
- Video Analysis for Dynamic cues and Futurist Art
 - J. Collomosse, P. Hall. Graphical Models. 2006.
- Motion Magnification
 - C. Liu, A. Torralba, W. Freeman, F. Durand, E. Adelson. SIGGRAPH 2005
- Video SnapCut: Robust Video Object Cutout Using Localized Classifiers
 X. Bai, J. Wang, D. Simons, G. Saprio. SIGGRAPH 2009
- Stylized Displays of Home Image and Video Collections
 - T. Wang, R. Hu, J. Collomosse, D. Slatter, P. Cheatle, D. Greig. NPAR 2010 (CAG 2011)
- Painterly animation using video semantics and feature correspondence
 - L. Liang, K. Zeng, H. Lv, Y. Wang, Q. Xu, S. Zhu. NPAR 2010
- From Image Parsing to Painterly Rendering
 - K. Zeng, M. Zhao, C. Xiong, S. Zhu. ACM ToG 2010.

Higher Level Visual Analysis

- Artistic Stylization pre-2000
 - Dependent on low-level image processing (e.g. Sobel) to drive preservation of <u>local edge</u> and high frequency content.
- An Artist does not paint a stroke by looking only at the image content under that stroke
- A <u>higher level of visual analysis</u> is needed:

Consider more than local edge information

Global analysis vs. greedy placement

Computer Vision and Optimisation are solutions

Stylization and Abstraction of Photographs Decarlo and Santella. (2002)

- Segmentation (EDISON / Mean-Shift) [Christoudias et al, ICPR 2002]
 - Create a spatial hierarchy of regions
 - Strokes painted in a region have same prominence
 - Or render regions flat with black edges to create 'toon effect
 - Determine prominence of regions interactively

...using an eye tracker

Stylization and Abstraction of Photographs Implementation Steps

- Segment levels of low-pass (Gaussian) pyramid
 - DeCarlo uses factor of $\sqrt{2}\sigma$ between layers
 - Discard regions < 500 pixels (on 640x480 image)
- Segments grouped into hierarchy from fine to coarse based on overlap and common colour
- 1. For each* region A at the current level e.g. L₁
 - 2. Find the region B_i in level above e.g. L₂ maximising:

$$\operatorname{overlap}(A,B_i) = \frac{\operatorname{area}(A \cap B_i)}{\left\|\operatorname{color}(A) - \operatorname{color}(B_i)\right\| + 1}$$

3. Assign A's parent to Bi, providing $A \cap B_i$ is contiguous+

^{*}At step 1, iterate through regions in order of increasing area.

⁺ After all levels are processed, any orphan regions become children of root note.

Stylization and Abstraction of Photographs Decarlo and Santella. (2002)

- Painting starts at the coarsest level of region detail
- A region is split if more than half its children are fixated upon
- The resulting region map is noisy, but aesthetics improve after smoothing and vectorisation

- Alternative scale-space hierarchy using <u>sieves</u>
 - Morphological operations (closure followed by opening)

X=imerode(imdilate(X,ones(1,N)),ones(1,N));

The Art of Scale Space (Sieves) Bangham et al. (2003)

- Sieves better preserve edges/corners vs. Gaussian
 - Extended to 2D in [Bangham '99], NPR application [Bangham '03]. Colour sieves (Harvey '04)

Similar level of detail strategy to Decarlo/Santella can be applied to scale-space tree

Painting the regions

Paint via 3rd party algorithm e.g. Hertzmann with constant stroke size [Santella /DeCarlo NPAR'02]

Fill region with strokes in direction of principal axis [Shugrina et al, NPAR '06]

Fill with strokes in directions derived from region exterior contour [Wang et al, NPAR '10]

c.f. video painting...

- Automated Differential Emphasis in Painting
 - Prescriptive salience measures [Itti & Koch]
 - Not closely correlated to human behaviour [Santella/DeCarlo NPAR'04]
 - Salience is subjective and task dependent
 - Trainable measure of salience (GMM of radial features)

- Genetic Optimization to find "best" painting
 - The optimal painting preserves detail in salient areas, and removes non-salient detail
 - MSE between salience map and Sobel edge detail in the painting (c.f. Hertzmann '01)

- Paintings are bred by cloning strokes from two individuals
- (Two parent cross-over)
 - fitness proportionate selection with replacement
- Promotion of rapid convergence
 - Top 10% carried over to next gen. automatically
 - Bottom 10% culled

cross-over operator

- Iterative optimization improves detail in salient regions
 - Population of ~50 paintings
 - Convergence in ~200 iterations
 - Stochastic variation in stroke attributes creates diversity
 - GA combines favourable regions of parent paintings

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 15

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 16

Comparison of Salience vs. Edge based Painting

- Comparison of Sobel-driven and Salience-driven painting
 - Detail on the sign is preferentially retained (wrt. Leaves of the tree)
 - Not all edges / high frequency texture are salient

- Painting research code available
 - http://www.collomosse.com/EG2011tut/summerschool.zip

- MATLAB based (experiment with different salience maps)
- Code adapted from Collomosse et al.
 2005 single iteration, spline strokes.
- Previously released as lab exercise at EPSRC VVG Summer School (2007)

Image Analogies Hertzmann et al. (2001)

Style Transfer

- Learning vs Heuristic approach to stylise photos
- Patch based lookup (luminance only)

$$Y(p) \leftarrow \frac{\sigma_B}{\sigma_A}(Y(p) - \mu_A) + \mu_B$$

- Similar to Freeman texture synthesis but using external collection of patches
- Learned as lookup table

Style Transfer

- Synthesis has 'data' and 'smoothness' terms
 - Data (patch lookup)
 - Pixel-wise luminance comparison (after PCA)
 - Smoothness (derived from Ashikhmin)
 - Minimise MSE between proposed patch and existing neighbours
 - Gaussian weighted distance function (avoids discontinuity)

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 20

Style Transfer Examples

Other extensions to video [Hors & Essa '02] and to take orientation into account [Lee et al. '10]

Video Stylisation

- Techniques to create painterly animations or cartoons from video
- Enabled by automated techniques for image stylization

- Goal of video stylization
 - Create the desired aesthetic exhibiting good <u>temporal coherence</u>
- Temporal coherence is here defined as:
 - 1. Absence of distracting flicker
 - 2. Motion of brush strokes (or other component marks) is in agreement with the motion of content
- Naïve approaches
 - Repaint every frame independently
 - = Flicker (violates 1.)
 - Fix strokes in place and change attributes e.g. colour according to video content
 - = Motion unmatched (violates 2.)"the shower door effect" Barb Meier

- Painterly animation using Optical Flow
 - Brush strokes are pushed from frame to frame using flow estimate
 - Oscar winning visual effects in movie "What Dreams May Come" (1998)
 - Manual correction of flow estimate (~1000 person-hours [Green'99])

- Initialisation as per single image (regular seeding)
 - Randomise rendering order of strokes
- Strokes translated to next frame via flow field
- Greedy approximation to avoid irregular coverage
 - Delaunay triangulation of seeds (and image corners)
 - Death. Seeds too close together are deleted
 - Tested in random order
 - **Birth.** Triangles with area > threshold are subdivided
 - New seeds are randomly place rendering order

Photo credit: Litwinowicz '97

Stroke Birth

- Tips on reducing flicker
 - Detect your own scene cuts and reinitialise
 - Use a robust Optical Flow algorithm (!)
 - e.g. SIFTFlow or Brox
 - Pre-filter heavily (Gaussian). Care with interlaced content.
 - Interpolate orientations from strong edges only
 - Smooths out codec noise
 - Litwinowicz uses thin-plate spline (expensive) but can use Poisson filling (fast on GPU) to good effect

With interpolation

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 28 Photo credit: Litwinowicz '97

- Main sources of temporal incoherence
- Motion matching
 - Optical Flow = visual correspondence problem
 - Inevitable inaccuracies in estimate are cumulative
 - Content appears to slip below strokes = shower door effect
 - Manual correction of OF mitigates this but is expensive
- Flicker
 - Random order of new strokes disguises regularity
 - ...but the noise generates flicker
 - Sudden disappearance of strokes exposes others = popping
 - Sobel edges are noisy at moderate scales
 - Strokes are clipped against flicking edge map

Improving the Coherence of Flow-based Schemes

- Main sources of temporal incoherence
- Motion matching
 - Optical Flow = visual correspondence problem
 - Inevitable inaccuracies in estimate are cumulative
 - Content appears to slip below strokes = shower door effect
 - Manual correction of OF mitigates this but is expensive
- Flicker
 - Random order of new strokes disguises regularity
 - ...but the noise generates flicker
 - Sudden disappearance of strokes exposes others = popping
 - Sobel edges are noisy at moderate scales
 - Strokes are clipped against flicking edge map

Addressed by

Hertzmann and Perlin NPAR 2000

Hays and Essa NPAR 2004

Painterly Rendering for Video and Interaction

Hertzmann and Perlin (2000)

- Repaint only the areas that change significantly
 - Fast enables realtime interaction
 - Limits shower-door by repainting limited regions of canvas ("paint-over")
- RGB Difference to detect regions
 - Optical flow optionally used to translate strokes

$$\frac{1}{|M|} \sum_{(i,j)\in M} ||I_{t+1}(i,j) - I_t(i,j)|| > T_V$$

Control points shifted under flow

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 32

Paint-Over and Optical Flow

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 33

Image and Video-based Painterly Animation Hayes & Essa (2004)

- Key Innovation
 - Temporal smoothing of stroke attributes
- Stroke Opacity for birth/death
- Orientation
 - RBF interpolated field (similar to Litwinowicz)
 - But interpolated from strokes marked "strong".
 not from per-frame orientation field
 - Strokes born on strong edges
- Length and orientation are also smoothed

Image and Video-based Painterly Animation

Hayes & Essa (2004)

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 35

Image and Video-based Painterly Animation

Hayes & Essa (2004)

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 36

Video Watercolorization by bi-directional advecation Boisseau et al. (2007)

- Bi-Directional Flow (of textures vs. strokes)
 - Adaptation of "Texture advection" from flow visualisation
 - Frequent occlusions in video motivated bi-directional flow
 - Two textures seeded one flows forward, one back

Trend towards more global temporal analysis

Temporally local (inter-frame) approaches

- No long-view of video structure
 - necessitates averaging of past information
 - Averaging mitigates flicker but exaggerates the shower door effect

Spatio-temporal primitives

timeslice

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 38

Space-time Segmentation for Video Stylisation

- Automated Space-time Analysis
 - Goal is coherent segmentation of video into semantic regions
 - Coherent space-time regions are smoothed then do not flicker

Extending Mean-shift to Space-time (3D)

EDISON segment frames and associate (2D+t)

Stroke Surfaces: Coherent Artistic Animations from Video Collomosse et al. (2005)

- Region association (2D+t)
 - Based on a weighted blend of heuristics
 - Shape (Fourier Descriptors)
 - Colour
 - Overlap (as DeCarlo/Santella)
 - Associations are filtered by locating
 - Short-time branches
 - Short-time cycles
 - Surface voxels between volumes are identified
 - Surfaces fragmented into "stroke surfaces" that abut only two volumes

Stroke Surfaces: Coherent Artistic Animations from Video Collomosse et al. (2005)

- "Stroke Surfaces" separate volumes
 - Winged edge structure
 - Smoothing the surface smoothes the volumes
 - Generalisation of snakes to 2D surfaces
 - Separate terms for spatial and temporal constraint

$$E = \int_0^1 \int_0^1 (E_{int}[\underline{Q}(s,t)] + E_{ext}[\underline{Q}(s,t)]) ds dt$$

$$E_{int} = \alpha \left| \frac{\partial \underline{Q}(s,t)}{\partial s} \right|^2 + \beta \left| \frac{\partial \underline{Q}(s,t)}{\partial t} \right|^2 + \gamma \left| \frac{\partial^2 \underline{Q}(s,t)}{\partial s^2} \right|^2 + \delta \left| \frac{\partial^2 \underline{Q}(s,t)}{\partial t^2} \right|^2$$

$$E_{ext} = \eta f(\underline{Q}(s,t)).$$

Stroke Surfaces: Coherent Artistic Animations from Video Collomosse et al. (2005)

Surface Manipulation

Undulation

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 42

Stroke Surfaces: Coherent Artistic Animations from Video Collomosse et al. (2005)

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 43

Stroke Surfaces: Coherent Artistic Animations from Video Collomosse et al. (2005)

Coherent Segmentation

Rotoscoping for Painterly Rendering Agarwala et al. (2004)

Rotoscoping

- Coherent motion of (groups of) regions can be exploited to paint coherently
- Interpolate internal points (e.g. stroke seeds) from region boundary

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 45

Rotoscoping

Rotoscoping

Coherent motion of (groups of) regions can be exploited to paint coherently

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 47

Cartoon Style Rendering of Motion Collomosse et al. (2003)

Motion Emphasis

- Augmentation cue (Speed-lines, ghosting)
- Deformation (Squash and stretch, general deformation)
- Time warping (Anticipation/snap)

Augmentation Cues

- Segment trails of corresponded control points into smooth sections.
- Iteratively select smooth sections to maximising:

 A motion dependent curvilinear basis is formed using the trajectory of the region centroid, and its normal.

$$\underline{x} = \underline{G}_c(s) + r\underline{n}(s)$$

U(.) as the transformation from curvilinear space, keep the inverse as a lookup table.

$$\underline{x} = U(\underline{r})$$
 $\underline{r} = (s, r)^T$

$$\underline{x} \leftarrow U(\begin{bmatrix} k & \mathbf{0} \\ \mathbf{0} & \frac{1}{k} \end{bmatrix} U^{-1}(\underline{x}))$$

$$k = 1 + \frac{K}{2}(1 - \cos(\pi \frac{v^2 + 1}{2}))$$

$$v = \begin{cases} 0 \text{ if } |\underline{\dot{\mu}}| < V_{min} \\ 1 \text{ if } |\underline{\dot{\mu}}| >= V_{max} \\ (|\underline{\dot{\mu}}| - V_{min})/(V_{max} - V_{min}) \text{ otherwise} \end{cases}$$

Squash and stretch (after Chenney et al '02)

Squash and stretch in a camera motion compensated frame

• More general motion deformations can be created by specifying a transfer function dependent on a point's local acceleration and position, as well as its speed.

$$x' = U(T(U^{-1}(\underline{x}), \underline{\dot{x}}, \underline{\ddot{x}}))$$

A function can operate on each component of $\underline{r}=(r_1,r_2)$ independently, to create effects suggesting drag we use...

$$r_1 = r_1 - F(\frac{2}{\pi}atan(|\underline{\dot{x}}_i|))^P sign(\underline{\dot{x}}_i)$$

Video Analysis for Dynamic Cues Collomosse and Hall (2005)

Anticipation (Snap)

Alter motion timing to introduce a lag then "catch up" prior to changes of motion

Video Paintbox: The Fine Art of Video Painting

Collomosse and Hall (2006)

A Complete Video Paintbox

Segmentation + augmentation + deformation

Anticipation + deformation

- General deformation technique using motion vector clustering to layer video
 - User intervention needed to fix noisy segmentation maps
- Per-pixel flow vector pushes pixels to exaggerate existing motion
- Texture filling compensates for holes

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 55

Motion Magnification

- Combining Segmentation and Optical Flow
 - Multi-label graph-cut segmentation with label prior propagated forward from previous frames
 - Region colour models are learned incrementally

propagation to next...

Motion Magnification

- Combining Segmentation and Optical Flow
 - For each pixel $p \in \mathcal{P}$ within frame $I_t(p)$
 - Find best mapping $l: \mathcal{P} \to \mathcal{L}$ $\mathcal{L} = (l(1), \dots, l(p), \dots, l(|\mathcal{P}|))$
 - Subset of are carried from t-1 by flow

 $E(\mathcal{L},\Theta,\mathcal{P}) = U(\mathcal{L},\Theta,\mathcal{P}) + V(\mathcal{L},\mathcal{P}).$ Learned colour model $U(\mathcal{L},\Theta,\mathcal{P}) = \sum_{p \in \mathcal{P}} -\log P_g(I_t(p)|l(p);\Theta).$ $P_g(I(p)|l(p) = l_i;\Theta) = \sum_{k=1}^{n_t} w_{ik} \mathcal{N}(I(p);\mu_{ik},\Sigma_{ik})$ Contrast adaptive $V(\mathcal{L},\mathcal{P}) = \gamma \sum_{(m,n) \in N} [l(m) \neq l(n)] e^{-\beta ||I(m) - I(n)||^2}.$

 Colour models are learned over time incrementally via Gaussian Mixtures

- Region colour distribution (GMM) updated with temporal weight
 - Comparison with historic model (Chi^2) can detect region birth

- Trends from automatic 'Tooning to interactive tools
 - The necessity of interaction to solve the general segmentation problem

Bai et al. '09

Liang et al. '10

Yet many applications demand automation or real-time. Part III discusses solutions.

Artistic Stylisation of Images and Video

Coffee Q & A

- After the break!
 - Part III Anisotropy and Diffusion
 - Part IV Future Challenges in NPR

Eurographics 2011 • Artistic Stylization of Images and Video • Part II • 60

Photo credits as noted in Part III