Artistic Stylization of Images and Video

Eurographics 2011

John Collomosse and Jan Eric Kyprianidis

Centre for Vision Speech and Signal Processing (CVSSP) University of Surrey, United Kingdom

Hasso-Plattner-Institut, University of Potsdam, Germany

http://kahlan.eps.surrey.ac.uk/EG2011

Artistic Stylization Resources

Strothotte & Schlechtweg ISBN: 1558607870

Gooch & Gooch ISBN: 1568811330

Romero & Machado ISBN: 3540728767

Web Bibliographies

http://video3d.ims.tuwien.ac.at/~stathis/nprl ib/index.php

http://isgwww.cs.unimagdeburg.de/~stefans/npr/nprpapers.html

http://www.red3d.com/cwr/npr/ (dated)

Tutorials

SIGGRAPH 99 (Green et al.) – 2D/3D NPR SIGGRAPH 02 (Hertzmann) – 2D NPR SIGGRAPH 03 (Sousa et al.) – 2D/3D NPR Eurographics 05,06 and... SIGGRAPH 06 (Sousa et al) – 3D NPR SIGGRAPH 10 (McGuire) – 3D NPR for Games

Main Publication Forums

NPAR (Symposium on Non-photorealistic Animation) Held in Annecy even years, at SIGGRAPH odd years.

IEEE Trans Visualization and Comp. Graphics (**TVCG**) IEEE Computer Graphics and Applications (**CG&A**) **Eurographics** and **Computer Graphics Forum SIGGRAPH, SIGGRAPH Asia** and **ACM ToG** EG Symposium on Rendering (**EGSR**) ACM/EG Symposium on Computer Animation (**EGSA**)

Artistic Stylization

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Motivation

Artistic Stylization can

- Simplify and structure the presentation of content
- Selectively guide attention to salient areas of content and influence perception
- Learn and emulate artistic styles
- Provide assistive tools to artists and animators (not replace the artist!)
- Help us to design effective visual interfaces

Eurographics 2011 • Artistic Stylization of Images and Video • Part I •

Tatzgurn et al. NPAR 2010

Motivation

Artistic Stylization

- Rendering real images/video footage in to pseudo-artistic styles
- Convergence of Computer Vision, Graphics (and HCI)

Visual analysis enables new graphics. Graphical needs motivate new vision.

Chronology

Interactions with Vision

Eurographics 2011 LLANDUDNO UK

Tutorial Structure

Artistic Stylization of Images and Video

Part I – Classical Algorithms / Stroke Based Rendering Eurographics 2011

John Collomosse

Centre for Vision Speech and Signal Processing (CVSSP), University of Surrey, United Kingdom

References

- Paint by numbers: Abstract image representations
 P. Haeberli, SIGGRAPH 1990
- Almost Automatic Computer Painting P. Haggerty, IEEE CG & A 1991
- Orientable Textures for Image based Pen-and-Ink Illustration
 D. Salisbury et al., SIGGRAPH 1997
- Processing images and video for an impressionist effect
 P. Litwinowicz, SIGGRAPH 1997
- Statistical techniques for the automated synthesis of non-photorealistic images S. Treavett and M. Chen, Eurographics UK 1997.
- Automatic Painting based on Local Source Image Approximation Shiraishi and Yamaguchi, NPAR 2000.
- Painterly Rendering with Curved Strokes of Multiple Sizes
 A. Hertzmann, SIGGRAPH 1998.
- Paint by Relaxation
 A. Hertzmann, CGI 2001
- Fast Paint Texture
 A. Hertzmann, NPAR 2002

Early painting systems lacked appropriate UI for rich digital painting

- Stroke based rendering (SBR)
- Painting is a manually ordered list of strokes, placed interactively.
- Stroke attributes sampled from the photo.

- Stroke <u>colour</u> and <u>orientation</u> are sampled from the source image
- Stroke <u>order</u> and <u>scale</u> are user-selected
- Addition of RGB noise generates an impressionist effect

More stylised orientation effects with a manually defined orientation field

Orientation field

Painterly Rendering

Eurographics 2011 LLANDUDNO UK

Paint by numbers: Abstract Image Representations Haeberli. (1990)

All tutorial code at http://kahlan.eps.surrey.ac.uk/EG2011

- Very similar system for pen-and-ink rendering of photos
- User defined orientation field.
 - Regions manually drawn and marked up with orientation
- Stroke (line) placement automatic. Strokes clipped to keep within regions.

Almost automatic computer painting Haggerty (1991)

- Stroke <u>colour</u> and <u>orientation</u> are sampled from the source image
- Stroke <u>order</u> and <u>scale</u> are user selected
- Scale sampled from <u>Sobel edge magnitude</u>
- Regularly place strokes. Order of strokes <u>randomly generated</u>

Fully automated

Photo credit: Haeberli '90.

Interactive (Haeberli)

Pseudo-random (as Haggerty)

 Loss of detail in important regions

Processing Images & Video for Impressionist Effect Litwinowicz (1997)

Statistical techniques for automated synthesis of NPR Treavett and Chen (1997)

Common recipe for SBR in the 1990s

Eurographics 2011

11-15 April 2011

LANDUDNO LIK

- Sobel edge detection on blurred image
- <u>Regular seeding</u> of strokes on canvas
- Scale strokes inverse to edge magnitude
- Orient strokes along <u>edge tangent</u>
- Place strokes in a specific way using this data
- An interesting alternative uses 2nd order moments within local window to orient strokes.
 - Extended to multi-scale strokes by Shiraishi and Yamaguchi (NPAR 2000)

Eurographics 2011 LLANDUDNO UK 11-15 April 2011 Automatic Painting based on Local Source Image Approximation Shiraishi and Yamaguchi (2000)

2D zero-moments for greyscale image I(x,y)

 $M_{lm} = \sum \sum x^l y^m I(x, y).$

Automatic Painting based on Local Source Image Approximation Shiraishi and Yamaguchi (2000)

- The canvas is built up in layers from coarse to fine
 - Analysis window scale, and stroke scale are varied in proportion

- Artists do not paint with uniformly shaped short strokes (pointillism excepted!)
- Two key contributions (1998)
 - Multi-layer (coarse to fine) painting
 - Painting using β -spline strokes
- Spline strokes can be bump mapped for an improved painterly look (NPAR 2002)

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Painterly Rendering With Curved Brush Strokes Hertzmann (1998)

- Greedy algorithm for stroke placement
- Regularly sample the canvas to seed strokes
- Build a list of control points for each stroke by "hopping" between pixels*
 - Pick a direction arbitrarily (some implementations explore both)

* In practice, best to use float coordinates and interpolate edge orientation

Painterly Rendering With Curved Brush Strokes Hertzmann (1998)

- Greedy algorithm for stroke placement
- Regularly sample the canvas to seed strokes
- Build a list of control points for each stroke by "hopping" between pixels*
- 2) Make another hop, resolving directional ambiguity by hopping in the direction of min θ

Painterly Rendering With Curved Brush Strokes Hertzmann (1998)

- <u>Greedy algorithm</u> for stroke placement
- Regularly sample the canvas to seed strokes
- Build a list of control points for each stroke by "hopping" between pixels*
- 3) Keep hopping until end land on a pixel whose RGB colour differs (> threshold) from mean colour of stroke, or the stroke length is > a second threshold.

* In practice, best to use float coordinates and interpolate edge orientation

Painterly Rendering With Curved Brush Strokes Hertzmann (1998)

- Painting is laid down in multiple layers (coarse to fine)
- Band-pass pyramid (= differenced layers of low-pass)
- Strokes from early layers are visible in final layer

- Paint coarsest layer with large strokes
- Paint next layer with smaller strokes
 - Only paint regions that differ between the layers
 - Use RGB difference

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Painterly Rendering With Curved Brush Strokes Hertzmann (1998)

- Tips and tricks
 - Non-linear diffusion* instead of Gaussian blur sharpens the painting – preserves edges and accuracy of edge orientation.
 - Build Gaussian pyramid at octave intervals, σ=(1,2,4,8). 4 layers sufficient.
 - Stroke thickness also at octave intervals
 - Low-pass filter the hop direction $\boldsymbol{\theta}$

Paint by Relaxation Hertzmann. (2001)

Global Optimization to Iteratively Produce "Better" Paintings

How to define the optimality of a painting 'P' derived from a photo 'G'

$$\begin{split} E(P) &= E_{app}(P) + E_{area}(P) + E_{nstr}(P) + E_{cov}(P) \\ E_{app}(P) &= \sum_{(x,y)\in\mathcal{I}} w_{app}(x,y) || P(x,y) - G(x,y) || \\ E_{area}(P) &= w_{area}\sum_{S\in P} \operatorname{Area}(S) \\ E_{nstr}(P) &= w_{nstr} \cdot (\text{number of strokes in } P) \\ E_{cov}(P) &= w_{cov} \cdot (\text{number of empty pixels in } P) \end{split}$$
Weighted sum of Heuristics
Painting similar to photo - weighted
Stroke area ("paint used by artist")
Number of strokes
Fraction of canvas covered by strokes

- Weighting ω_{app} is derived from a Sobel edge magnitude (or user defined)
- The right strokes in the right place will minimize the energy function E(P)

Active Contours (Snakes) Kass et al. (1987)

Strokes selected at random and modified by local optimization to minimize E(P)

- Strokes modelled as active contours ("snakes")
 - ... but energy has no 1st/2nd order derivative terms
 - **E(P)** is approximated under control points

$$E(P) = \underbrace{E_{app}(P)}_{(x,y) \in \mathcal{I}} \underbrace{E_{area}(P) + E_{nstr}(P) + E_{cov}(P)}_{(x,y) \in \mathcal{I}} \underbrace{E_{area}(P)}_{(x,y) \in \mathcal{I}} \underbrace{w_{app}(x,y)}_{P(x,y) - G(x,y)}$$
$$E_{area}(P) = \underbrace{w_{area}}_{S \in P} \operatorname{Area}(S)$$
$$E_{nstr}(P) = \underbrace{w_{nstr}}_{(number of strokes in P)}_{E_{cov}(P)} = \underbrace{w_{cov}}_{(number of empty pixels in P)}$$

Weighted sum of Heuristics Painting similar to photo - weighted Stroke area ("paint used by artist") Number of strokes Fraction of canvas covered by strokes

Paint by Relaxation Hertzmann. (2001)

- Simplest solution (gradient descent)
 - Can be unstable for this weighted heuristic function

- Dynamic programming solution (Amini et al. '90)
 - Move each control point to obtain locally optimal position (5x5)
 - E(P) at control point dependent only on current v_i and previous v_{i-1}

$$s_{0}(v_{1}) = \min_{v_{0}} e_{0}(v_{0}) + e_{0}(v_{1}) + e_{1}(v_{0}, v_{1})$$

$$s_{1}(v_{2}) = \min_{v_{1}} s_{0}(v_{1}) + e_{0}(v_{2}) + e_{1}(v_{1}, v_{2})$$

$$\vdots$$

$$s_{i-1}(v_{i}) = \min_{v_{i-1}} s_{i-2}(v_{i-1}) + e_{0}(v_{i}) + e_{1}(v_{i-1}, v_{i})$$

Sobel magnitude can be replaced with a manually sketched mask to alter emphasis

Eurographics 2011 LLANDUDNO UK 11-15 April 2011

Stroke Rendering Library (C/C++)

- Quick Start: OpenGL research code for bump-mapped paint strokes
 - Strokes as Catmull-Rom (interpolating) splines
 - Bump mapping via Multi-texturing (can be disabled)
 - Dependency on OpenCV to load images (can substitute this trivially)
 - Code used in "Empathic Painting" Collomosse et al. NPAR 2006

http://kahlan.eps.surrey.ac.uk/EG2011